
CS4111 - Computer Science
Lecture Set 4: Boolean Algebra and Recursion

1

Logic• True or False

• (IF-THEN-ELSE)

• Charles Babbage (1791 - 1871)

• Differential Engine (1822)

• Solve Polynomial Functions

• Faraday’s electric engine (1821)

• Analytical Engine (1830)

• Programmable, memory, printer, CPU

• First built 153 years later!

Vision while on opium
“The Void”
“Existence”

George Boole (1815 - 1864)

• First Professor of Mathematics in UCC

• Formalised logic

• Lets us reason about unseen cases

• Enables scaling in modern computers — hyperscale

• “The Joy Of Logic”

• https://vimeo.com/137147126

https://vimeo.com/137147126

• Boolean Operators
• (AND, OR…)

• Relational Operators
• (<, >, =…)

• Prefix notation?
• (> 2 1) ... True
• (< 4 2) ... False

• Racket?
> (> 2 1)
#t
> (= 2 1)
#f
> (< (+ 3 1) (* 4 5))
#t

• > (+ 2 (> 3 1))
• Error

• Boolean Operators
• (AND, OR…)

• Relational Operators
• (<, >, =…)

• Prefix notation?
• (> 2 1) ... True
• (< 4 2) ... False

• Racket?
> (> 2 1)
#t
> (= 2 1)
#f
> (< (+ 3 1) (* 4 5))
#t

• > (+ 2 (> 3 1))
• Error

Question
Is (3 2 2 1) a descending list?

(> 3 2 2 1).. #f
(>= 3 2 2 1)..#t

Conditionals
• General view of conditional:
– if E then C1 else C2

• Meaning:
– if condition E is true
• THEN execute command(s) C1
• ELSE execute command(s) C2

• λ calculus / Racket view:
– if condition E is true
• THEN return C1
• ELSE return C2

Examples
• > (if (> 2 0) “first” “second”)
– ``first'’

• Return the larger of two numbers:
– (λxy. if (> x y) x y)

• AST:

x y

x>

if

y

λ

x y

Similar (but different)

(λxy.		(>	x			y))	
λ

x y

x y

>

Returns true or false

Returns larger number

• IF can have only one part as well:
– (λxy. if (> x y) x)

• Notice: λ calculus can use all the classical boolean
constructs:
– and, or, not
• (or #t #f)
• #t
• AST:

#t #f

or

• (not #t)
– #f

• (or #f #t)
– #t

• (and #f #t)
– #f

• (or (and #t #f) (or #f #t))
– #t

• AST:
or

and or

#t #f #f #t

or

#f #t
#t

All numbers are considered #t

(if 1 “first” “second”)
“first”

(or 1 0)
1

(or 0 1)
0

(or 31 #t)
31

(or #t 31)
#t

Note:
‘or’ returns the first TRUE
value it can find; otherwise it
returns FALSE.

Note:
This is different to many languages,
e.g. zero is often false

Note:
Sometimes the first TRUE
value is not a boolean!

Why return the first item?
Efficiency: This can save
unnecessary evaluations..

(or (f1 a) (f2 a) (f3 a)…(f1000 a))

Stop evaluating as soon as possible

• (and 3 -1)
• -1

• (and -1 3)
• 3

• (and 1 #f)
• #f

• (and #f 2)
• #f

• (or 1 #f)
• 1

• (not -1)
• #f

Note:	
‘and’	returns	the	first	FALSE	
value	it	can	find;	otherwise	
returns	TRUE	using	the	last	
item.	

Note:	
As	with	OR,	the	TRUE	item	could	be	
non-boolean

Efficiency of AND vs OR
AND requires everything to be
evaluated for true

(and (f1 a) (f2 a) (f3 a)…(f1000 a))

AND is the opposite of OR

• Extra Arguments?
– (not 1 2)
• not: arity mismatch…
 expected: 1
 given: 2

– (and 1 2 3 4)
• 4
• Returns the last item as it looks for a false

value

– (or 1 2 3 4)
• 1
• Returns the first true item as it looks for a

true value

Remember:	
and	returns	the	LAST	true	
item,	or	returns	the	FIRST	
true	item	

• Strings are always true

• (and “hello” “goodbye”)

• “goodbye”
• (or “hello” “goodbye”)
• “hello”

Use of Conditionals
• Decision making
• Give appearance of intelligence
– (define pass?
 (lambda (x)
 (if (>= x 40) “pass” “fail”)))
– (define pass2?
 (lambda (x)
 (if (>= x 40) #t #f)))
(pass? 25)
 “fail”
(pass2? 25)
 #f

Which is better?
pass2? because it returns a boolean

• pass? or pass2?
– pass2? returns either #t or #f
– pass? returns a string each time
– A string has a boolean value: #t.

(if
(and (pass? 35) (pass? 45))
“Passed both”
“Didn’t pass both”)

(and “fail” “pass”)

“pass”… incorrect!

(define passBoth (lambda(x y)
(if

(and (pass2? x) (pass2? y))
“Passed Both”
“Didn’t pass both”)
))

@

“Pa…”and

if

“Did…”

λ

x y

xpass2?

@

ypass2?

– Another example
• (define scrape
 (lambda (x)
 (if (and (< x 45) (pass2? x))
 #t #f)))

λ

x if

and

< @

x 45 pass2? x

#t #f

pass2? is reusable

• (scrape 42):
(< 42 45) à #t
(pass2? 42) à #t
➔ (and (< x 45) (pass2? 42)) à #t

• (define pass3? (lambda (x) (>= x 40)))
– Evaluates (>= x 40)
– Returns the boolean value.

• More examples:
–Write two functions
– (1) Check if a number is even.
– (2) Checks if a number is high-even, that is, if the

number is greater than 20 and	even.

• Built in Racket function:
> (integer? x) ... #t if x is an integer,
 #f otherwise
> (define even
 (lambda (x)
 (integer? (/ x 2))
)
)

> (define high-even
 (lambda (x)
 (and (> x 20) (even x))
)
)

high-even

Note: No IF part

> (define high-even2
 (lambda (x)
 (if (> x 20) (even x) #f)
)
)

Which is better? high-even or high-even2?
 high-even2 executes a function call first, incurs

“overhead”
 high-even relies on short-circuiting behaviour of AND.

When (> x 20) returns #f, execution stops
 Remember: AND returns the first FALSE item it finds
Therefore, high-even is better.

Function Call Overhead
Housekeeping required for each call
e.g. set up local variables

Recursion

Recursion

• Solve a problem with a
function that calls itself

• For example, how do you
calculate Factorial n?

• 3! = 3 * 2 * 1
• 4! = 4 * 3 * 2 * 1
• Answer: n * Factorial (n-1)
• …. kind of

Induction
• Prove for simple case
• Prove for case i+1
• Assume true for all
Inductive proof for dominoes:
• Informal
– The first domino knocks over the second
– which knocks the third
– and so on

• Classic
– The first domino falls
– Whenever the ith domino falls, it knocks the i+1th domino
– Therefore, all the dominoes fall.

• Idea
– Can prove something for a simple case
– Prove it for a general case
– Assume proven for all cases

• Important because?
– Numbers go to infinity
– Impossible to prove for every case

The Joy of Logic
It lets us reason about unseen cases

Recursion is similar to Induction
• Recursion
– Solve simple case of a problem
– Figure out how complex (general) case can be solved
– ….using the simple case
–Magically solves all cases

• Example: Compute Factorial
– Factorial 1 = 1 (Simple Case)
– Factorial n = n * (n-1) * (n-2) *… * 1
– Factorial n-1 = (n-1) * (n-2) *… * 1
– Factorial n = n * Factorial (n-1) (General Case)

• Factorial 1 = 1 [SIMPLE CASE]
• Factorial n = n * Factorial (n-1) [GENERAL

CASE]
• Fact 3: (shorthand for Factorial 3)
– Fact 3 = 3 * Fact 2
– Fact 2 = 2 * Fact 1
– Fact 1 = 1

• Go back up:
– Fact 2 = 2 * 1
– Fact 3 = 3 * 2 * 1

• Answer = 6.
• Each line:
– Does ONE thing
– Passes on the rest of the problem (to itself)

Implementation and Execution
• fact : (λn. if (= n 1)

 1
(* n (fact (- n 1))))

• Execute (fact 3):
• if (= 3 1) 1 (* 3 (fact (- 3 1)))
• (* 3 (fact (- 3 1))) = (* 3 (fact 2))

• Execute (fact 2):
• if (= 2 1) 1 (* 2 (fact (- 2 1)))
• (* 2 (fact (- 2 1))) = (* 2 (fact 1))

• Execute (fact 1):
• if (= 1 1) 1 (* 1 (fact (- 1 1)))
• 1

• Go back:
• (* 2 (fact 1)) = (* 2 1)

• 2

• Go back:
• (* 3 (fact 2)) = (* 3 2)

• 6 Final Answer

Recursive Call

AST (fact 3)

λ

@

3

n if

=

n 1

1 *

n @

fact -

n 1

β

n=3

if

=

3 1

1 *

3 @

fact -

3 1

#f

AST (fact 3)
*

3 @

fact -

3 1

2
λ

n if

=

n 1

1 *

n @

fact -

n 1

@

AST (fact 3)
*

3

λ 2

n if

=

n 1

1 *

n @

fact -

n 1

β

n=2

if

=

2 1

1 *

2 @

fact -

2 1

#f

*

3

1

AST (fact 3)

*

2 @

fact -

*

3

1

AST (fact 3)

*

2 @

fact -

*

3

1

*

2 1

*

3

6

In Racket
• (define fact

 (lambda (x)
 (if (= x 1)

1
(* x (fact (- x 1))))

)
)
• (fact 3)
• 6

• (fact 5)
• 120

• (fact -1)
• Infinite recursion

Infinite Recursion
Each function call incurs overhead,
including local variables…
eventually computer runs out of
memory

Racket-specific
If a call exceeds maximum allowed
memory (default 240MB)
…it is terminated.

Error checking
Change condition to
(if (<= x 1)…

Fibonacci (1170 - 1250)

Fibonacci (1170 - 1250)

Fibonacci (1170 - 1250)

Fibonacci (1170 - 1250)

Fibonacci	(1170	-	1250)Fibonacci (1170 - 1250)Fibonacci Series
Model of rabbit population growth
• Start with one pair
• Rabbits can mate at the age of one month
• Gestation period is one month
• Two rabbits produced each time
• Equal number of male and female rabbits
• Rabbits never die

How many pairs will there be in one year?

F0 F1 F2 F3 F4 F5 F6

0 1 1 2 3 5 8

Fn	=	Fn-1	+	Fn-2

Fibonacci	(1170	-	1250)Fibonacci (1170 - 1250)Fibonacci Series
Model of rabbit population growth
• Start with one pair
• Rabbits can mate at the age of one month
• Gestation period is one month
• Two rabbits produced each time
• Equal number of male and female rabbits
• Rabbits never die

How many pairs will there be in one year?

F0 F1 F2 F3 F4 F5 F6

0 1 1 2 3 5 8

Fn	=	Fn-1	+	Fn-2

Fibonacci Series

(define fib
 (lambda (x)

(if (<= x 2)
1
(+ (fib (- x 1))
 (fib (- x 2))
)))

Base Case

General Case}

Fibonacci Series

(define fib
 (lambda (x)

(if (<= x 2)
1
(+ (fib (- x 1))
 (fib (- x 2))
)))

Base Case

} General Case

Additional Reading on Recursion

• Given in “Reference Material”
– On the class website

– Section 1.2 Procedures and the
Processes They Generate

• Implement and understand two
different implementations of
factorial.

• Also attempt Exercise 1.9.

Recursion and Iteration (loops)

• Iteration may sometimes replace recursive function
int	fact=1;	
for	(int	j=arg;	j>1;	j--)	
 fact = fact * j;

• But not always!
• Sometimes not trivial to replace a recursive function.
– For example browsing a tree of item categories on argos.ie or

amazon.com
– Useful exercise: implement Fibonacci in Java

Web crawler/spider/Googlebot
Visit every page in a hierarchy

Fibonacci Loop in Java
public static int fibonacciLoop(int number) {
 if (number == 1 || number == 2) {
 return 1;
 }
 int fibo1 = 1, fibo2 = 1, fibonacci = 1;
 for (int i = 3; i <= number; i++) {
 fibonacci = fibo1 + fibo2;
 fibo1 = fibo2;
 fibo2 = fibonacci;

 }
 return fibonacci;
}

Base Cases

Initialise some variables

Sum of two previous numbers

} Prepare for next iteration

Final result

Run time

number fibonacci fibo1 fibo2
(initial) 1 1 1
3 2 1 2
4 3 2 3
5 5 3 5
6 8 5 8
7 13 8 13

Solving problems recursively

• Identify the base case; then identify the general case
• Not always easy
– General case may be difficult to formulate

• Example: Add numbers from 0 … n.
– Base Case/Terminating Case/Simple case
• 0 … nothing to add
• i.e. sum(0) = 0

• General case:
– sum(n) = n + (n – 1) + (n – 2) + …. + 0
– sum(n-1) = (n – 1) + (n – 2) + …. + 0
– Thus, sum(n) = n + sum(n-1)

• Putting it together:
sum: λn. if (= 0 n) 0
 (+ n (sum (- n 1)))

• Another view: recognise a sequence
• n 0 1 2 3 4 ...
• sum(n) 0 1 3 6 10 ...

• n 0 1 2 3 4 ...
• fact(n) 0 1 2 6 24 ...
• Write a recursive function that generates the sequence
• i.e. for a given value of n, it produces sum(n) or fact(n).

Solving problems recursively

Generating Functions from Sequences
• Using λ calculus & recursion for design
– Try to describe what is happening with sequence

• Example: explain the following sequence
– n 1 2 3 4 ...
– f (n) 1 5 9 13 ...
– Base?
• f(1) = 1

– General?
• No easy way to spot; however, usually f(n) is somehow

related to f(n-1)
• Here, each number is 4 bigger than the previous one.
• Therefore, f(n) = f(n-1) + 4

• Mathematically:
– f(1) = 1
– f(n) = f(n-1) + 4

• Recursive λ calculus function:
– f : λn. if (= n 1) 1
 (+ (4 (f (- n 1))))

• Another example:
– n 1 2 3 4 ...
– f (n) 1 5 13 29 ...
– f(1) = 1. (won't always be)
– f(n) = ?
– Usually f(n) = calc(n) + f(n-1)
 (but not always...)

• Write out:
– n 1 2 3 4 ...
– f (n) 1 5 13 29 ...
• f(1) = 1
• f(2) = 5 = f(1) + 4
• f(3) = 13 = f(2) + 8
• f(4) = 29 = f(3) + 16
• f(5) = 61 = f(4) + 32

– 4, 8, 16... powers of 2.
• Aside:
– Power of two in λ calculus?
• λx. (* x x)
• Only squares; need to generate higher

powers of two

• A more useful function:
– (pow x y) (i.e. xy)
– Base case: x0 = 1, thus (pow x 0) = 1
– General case: (* x (pow x (- y 1))
• Because xy = x * xy-1

• Notice:
– Two variables
– Only one controls recursive call

• Recursive λ calculus function:
– pow : λxy. if (= 0 y) 1
 (* x (pow x (- y 1)))

pow : λxy. if (= 0 y) 1
 (* x (pow x (- y 1)))

• Evaluate 32
– (pow 3 2)
– if (= 0 2) 1 (* 3 (pow 3 1))
 if (= 0 1) 1 (* 3 (pow 1 0))
 if (= 0 0) 1 (* 3 (pow 3 -1))
– (* 3 (* 3 1)) = 9

• Back to original question:
– f(1) = 1
– f(n) = f(n-1) + 2n

• Recursive λ calculus function:
– f : λn. if (= n 1) 1
 (+ (f (- n 1)) (pow 2 n))

Trace Execution

Each recursive call to f uses another
recursive function (pow)

Procedures and Processes
• Procedures: another term for functions.
• Function call generates a computational process
– i.e. a set of steps required to execute the code

• Important to understand this process to become
an expert programmer
• i.e. not all code is executed
• sometimes code is executed multiples times

• Possible to examine the shape it generates.

• Reminder: factorial	
– (fact n) = (* n (fact (- n 1)) (General Case)
– Example execution: (fact 4)

No.	of	steps		
2*n	=	2	*	4

Time

Space	(Memory	Required)

– (fact	4)	
– (*	4	(fact	3))	
– (*	4	(*	3	(fact	2)))						
– (*	4	(*	3	(*	2	(fact	1))))	
– (*	4	(*	3	(*	2		1)))	
– (*	4	(*	3		2))	
– (*	4		6)	
– 24	

Memory Footprint
The maximum amount of memory
used

Factorial with a non-recursive process

• Avoid deferred operations:
– Keep a running product with every recursive call
–Much like with loops/iterations. Recall:
int product=1;
int counter=1;
while (counter <= n){
 product = product * counter;
 counter++;
}

Counter Product
1 1
2 2
3 6
4 24

Note: No deferred
operations =>
iterative process.

Factorial: non-recursive process with a
recursive function

• (facto counter product n):

– (facto 1 1 4)
– (facto 2 2 4)
– (facto 3 6 4)
– (facto 4 24 4)

• Constant Memory/space required
– Because no deferred operations.
–Much like with loops.
– Hence, an iterative	process.

steps		
n	=	4

Time

Space	(Memory	Required)
n	is	the	factorial	we’re	calculadng	
product	is	the	running	total	
counter	is	the	number	of	steps

(say	n	=	4)

A recursive function with an iterative process

(define facto (lambda (counter product n)
(if (> counter n)
product
(facto (+ counter 1)

 (* counter product)
 n

)
)
)
)

Final Exam

• 2.5 hours
• Answer four out of five questions
• 2 questions involving recursion.
• All material is examinable
– Some questions based on practical/tutorial questions
– Some general questions
– Some definitions
– Understanding rather than memorising

Final Exam

• Read questions carefully before starting
• Revisit mid-term questions carefully.
• Show all your work
• Calculators are permitted, but only actual calculators
• Always explain definitions with examples.
• No labs/tutorials in week 13.
• Check class website every day before the exam

