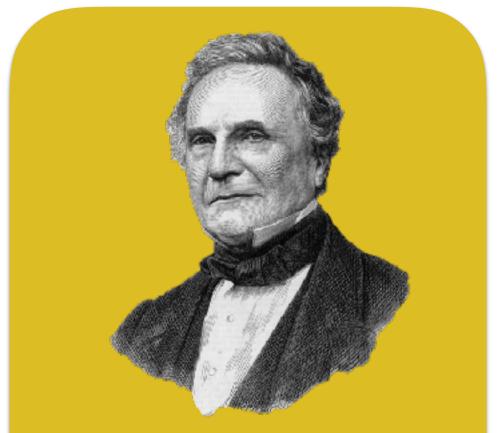
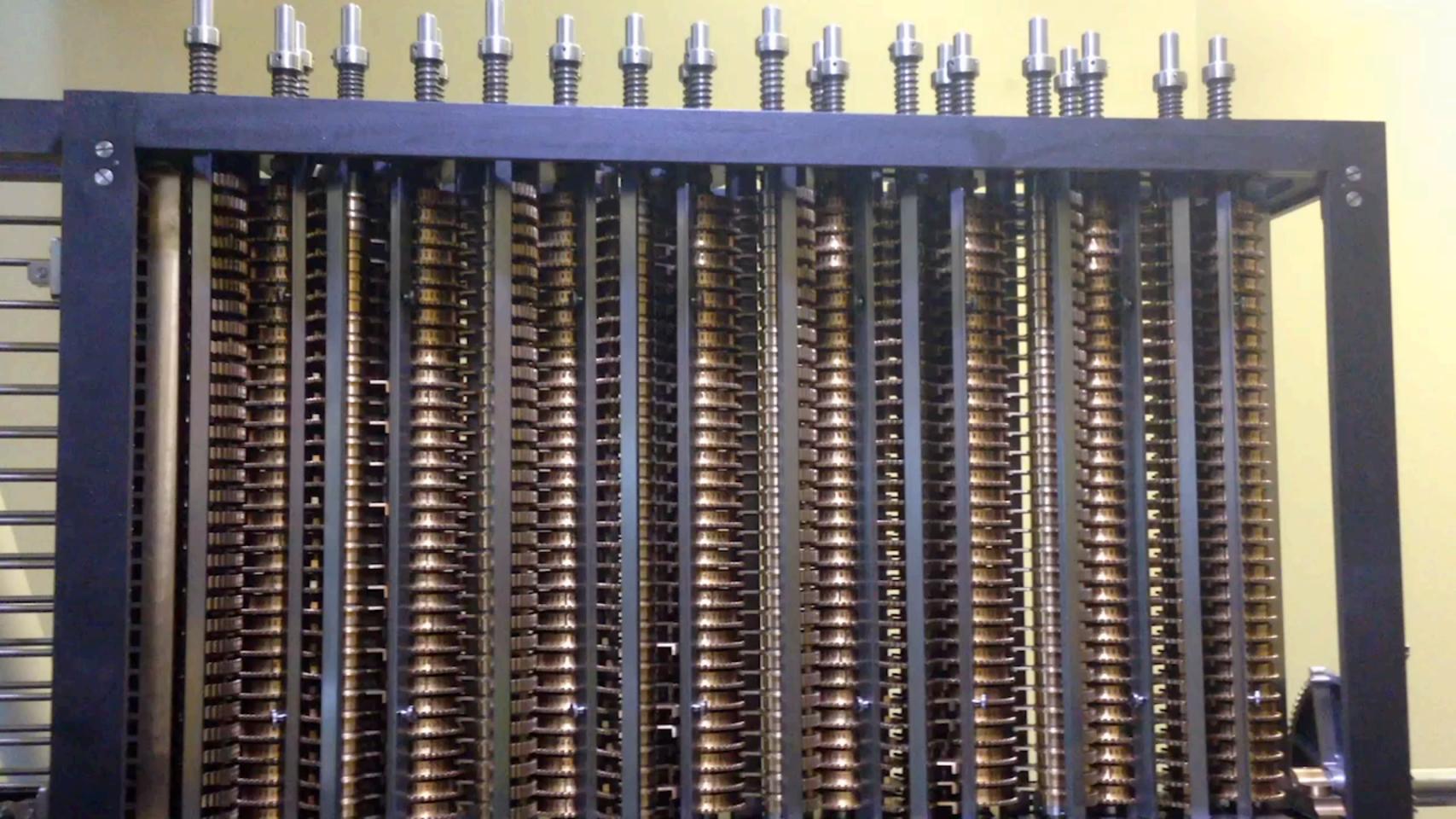
CS4111 - Computer Science Lecture Set 4: Boolean Algebra and Recursion

- True or False
 - (IF-THEN-ELSE)
- Charles Babbage (1791 1871)
 - Differential Engine (1822)
 - Solve Polynomial Functions
 - Faraday's electric engine (1821)
 - Analytical Engine (1830)
 - Programmable, memory, printer, CPU
 - First built 153 years later!



Vision while on opium "The Void" "Existence"



George Boole (1815 - 1864)

- First Professor of Mathematics in UCC
- Formalised logic
- Lets us reason about unseen cases
 - Enables scaling in modern computers hyperscale
- "The Joy Of Logic"
 - <u>https://vimeo.com/137147126</u>

- Boolean Operators
 - (AND, OR...)
- Relational Operators
 - (<, >, =...)
- Prefix notation?
 - (> 2 1) ... True
 - (< 4 2) ... False
- Racket?
 - > (> 2 1) #t
 - > (= 21)#f > (< (+ 21) (* 45)
 - > (< (+ 3 1) (* 4 5)) #t
- > (+ 2 (> 3 1))
 Error

• Boolean Operators • (AND, OR...) • Relational Operators • (<, >, =...) • Prefix notation? • (> 2 1) ... True • (< 4 2) ... False • Racket? > (> 2 1)#t > (= 2 1)#f > (< (+ 3 1) (* 4 5))#t • > (+2 (> 3 1))Error

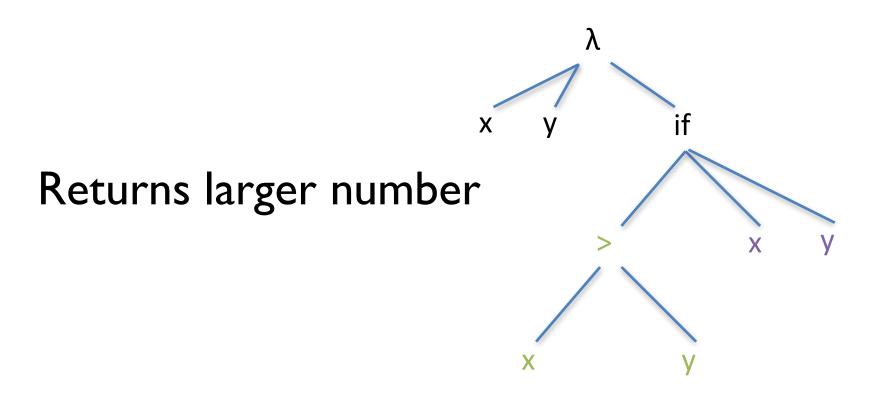
Question Is (3 2 2 1) a descending list? (> 3 2 2 I)..#f (>= 3 2 2 1)..#t

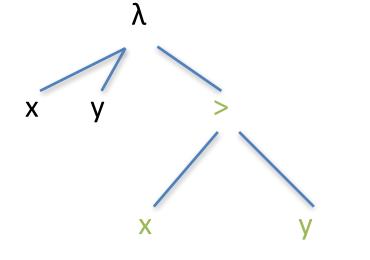
Conditionals

- General view of conditional:
 if E then C1 else C2
- Meaning:
 - if condition E is true
 - THEN execute command(s) C1
 - ELSE execute command(s) C2
- λ calculus / Racket view:
 - if condition E is true
 - THEN return C1
 - ELSE return C2

- > (if (> 2 0) "first" "second") -``first"
- Return the larger of two numbers: $-(\lambda xy. if (> x y) x y)$ Similar (but different) • AST:

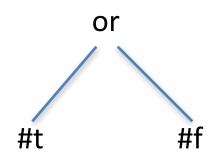
$$(\lambda xy. (> x y))$$





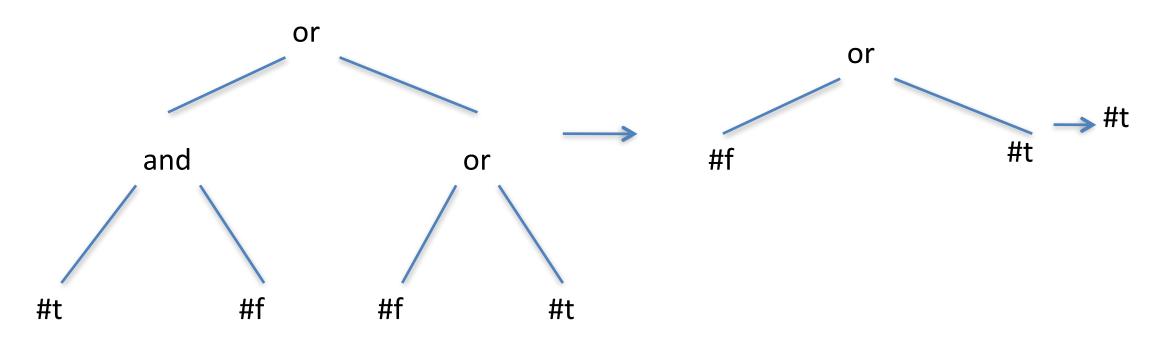
Returns true or false

- IF *can* have only one part as well: $-(\lambda xy. if (> x y) x)$
- Notice: λ calculus can use all the classical boolean constructs:
 - and, or, not
 - (or #t #f)
 - #t
 - AST:



- (not #t) - #f
- (or #f #t) - #t
- (and #f #t) - #f
- (or (and #t #f) (or #f #t)) - #t

• AST:



All numbers are considered #t

Why return the first item? Efficiency: This can save unnecessary evaluations..

(or (f1 a) (f2 a) (f3 a)...(f1000 a))

Stop evaluating as soon as possible

31 • (or #t 31)

● #t

Note: e.g. zero is often false

Note: returns FALSE.

Note: value is **not** a boolean!

This is different to many languages,

'or' returns the first TRUE value it can find; otherwise it

Sometimes the first TRUE

AND is the opposite of OR

- (and 3 -1)
 - -1
- (and -1 3)
 - 3
- (and 1 #f)
 - #f
- (and #f 2)
 - #f
- (or 1 #f)
 - 1
- (not -1)

• #f

Efficiency of AND vs OR AND requires everything to be evaluated for true

(and (f1 a) (f2 a) (f3 a)...(f1000 a))

Note:

As with OR, the TRUE item could be non-boolean

- Extra Arguments? -(not 1 2)
 - not: arity mismatch...
 - expected: 1

given: 2

- (and 1 2 3 4)
 - 4
 - Returns the last item as it looks for a false value

 $-(\text{or } 1\ 2\ 3\ 4)$

- 1
- Returns the first true item as it looks for a true value

- Strings are always true
 - (and "hello" "goodbye")
 - "goodbye"
 - (or "hello" "goodbye")
 - "hello"

Remember: true item

and returns the LAST true item, or returns the FIRST

Use of Conditionals

- Decision making
- Give appearance of intelligence - (define pass?

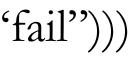
(lambda (x) $(if (\ge x 40) "pass" "fail")))$

- (define pass2?

(lambda (x) $(if (\ge x 40) \#t \#f))$

(pass? 25) "fail" (pass 2? 25)#f

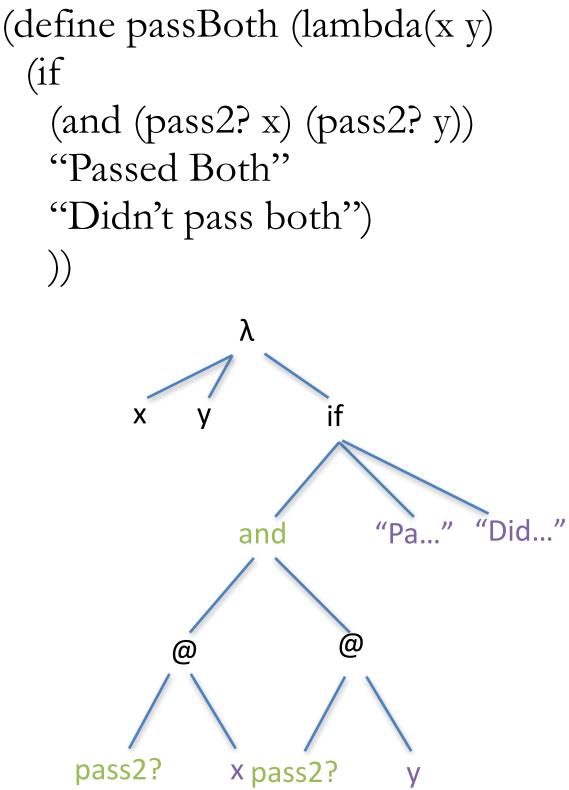
Which is better? pass2? because it returns a boolean

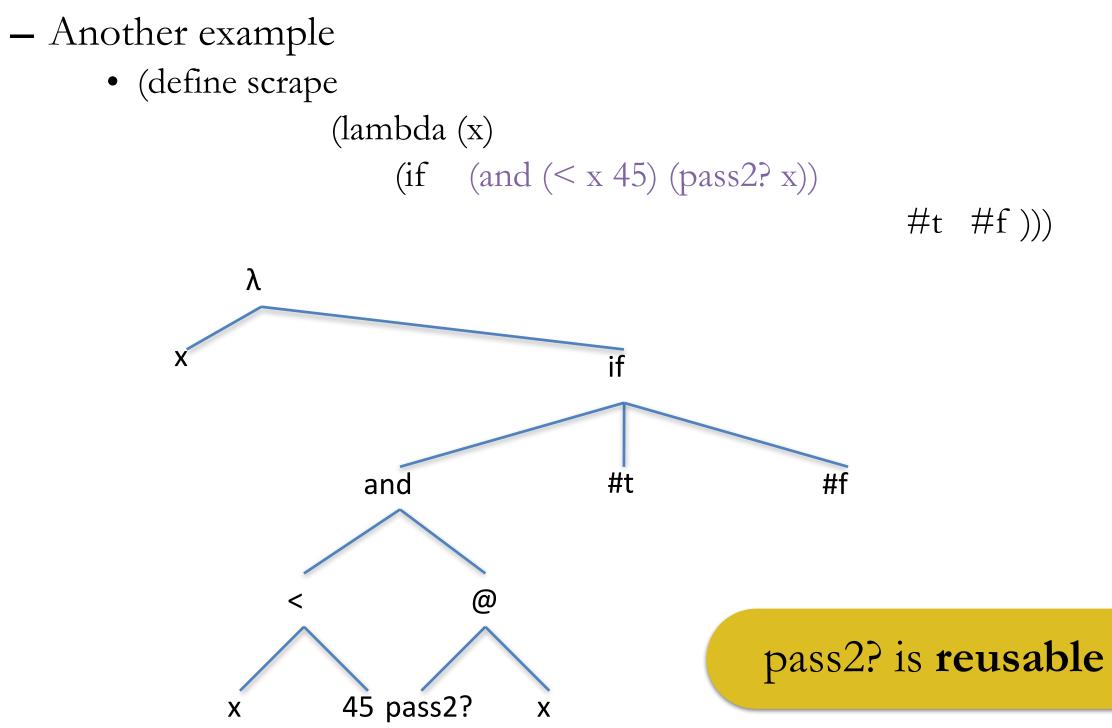


- pass? or pass2?
 - pass2? returns either #t or #f
 - pass? returns a string each time
 - A string *has* a boolean value: **#t**.
- (if
 - (and (pass? 35) (pass? 45)) "Passed both" "Didn't pass both")

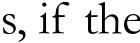
(and "fail" "pass")

"pass"... incorrect!

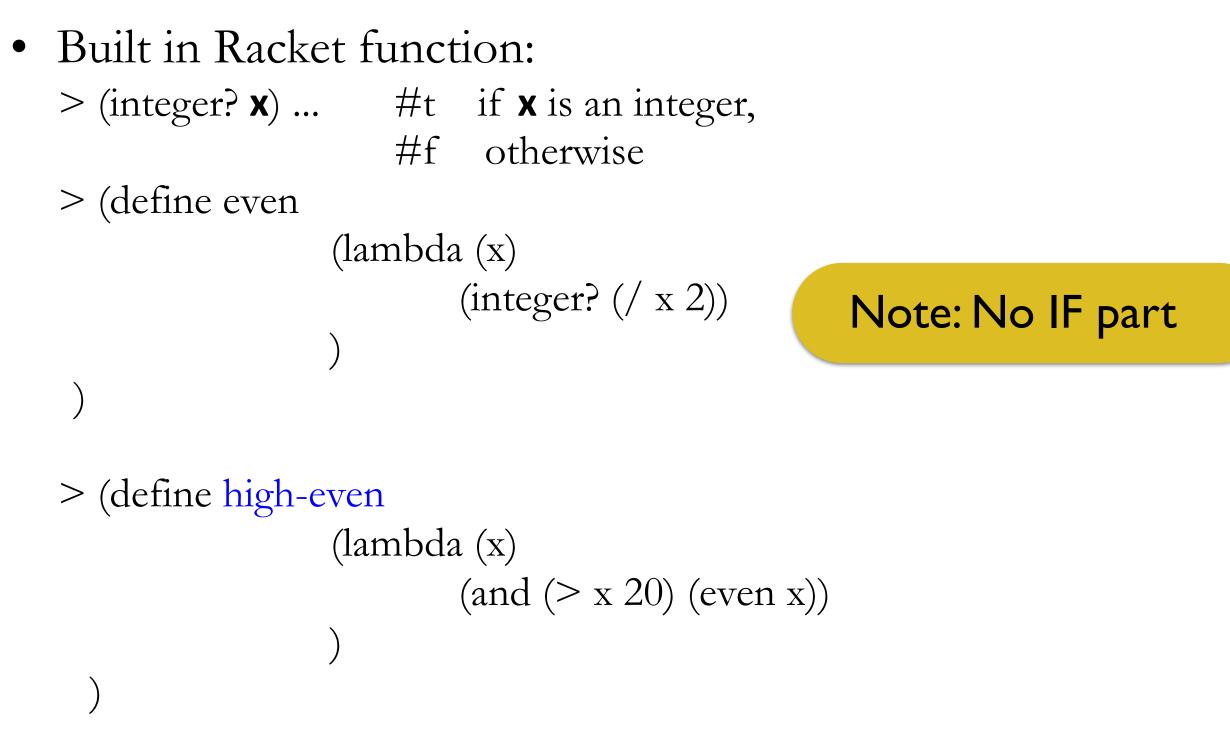




- (scrape 42): (< 42.45)#t (pass2? 42) #t \rightarrow \rightarrow (and (< x 45) (pass2? 42)) \rightarrow #t
- (define pass3? (lambda (x) ($\ge x 40$))) - Evaluates ($\ge x 40$)
 - Returns the boolean value.
- More examples:
 - Write two functions
 - -(1) Check if a number is even.
 - (2) Checks if a number is high-even, that is, if the number is greater than 20 and even.



high-even



Function Call Overhead > (define high-even2 Housekeeping required for each call (lambda (x) e.g. set up local variables (if (> x 20) (

Which is better? high-even or high-even2? high-even2 executes a function call first, incurs "overhead"

high-even relies on short-circuiting behaviour of AND. When (> x 20) returns #f, execution stops **Remember:** AND returns the first FALSE item it finds Therefore, high-even is better.

Recursion

Recursion

- Solve a problem with a function that calls itself
- For example, how do you calculate Factorial *n*?
- 3! = 3 * 2 * 1
- 4! = 4 * 3 * 2 * 1
- Answer: n * Factorial (n-1)
- kind of

Induction

- Prove for simple case
- Prove for case i+1
- Assume true for all
- Inductive proof for dominoes:
- Informal
 - The first domino knocks over the second - which knocks the third

 - and so on

- Classic
 - The first domino falls
 - Whenever the *i*th domino falls, it knocks the *i+1*th domino
 - Therefore, all the dominoes fall.
- Idea
 - Can prove something for a simple case
 - Prove it for a general case
 - Assume proven for all cases
- Important because?
 - Numbers go to infinity
 - Impossible to prove for every case

The Joy of Logic

It lets us reason about unseen cases

Recursion is similar to Induction

- Recursion
 - Solve <u>simple case</u> of a problem
 - Figure out how complex (*general*) case can be solved
 -using the simple case
 - Magically solves all cases
- Example: Compute Factorial
 - -Factorial 1 = 1
 - Factorial n = n * (n-1) * (n-2) * ... * 1
 - Factorial n-1 = (n-1) * (n-2) * ... * 1
 - Factorial n = n * Factorial (n-1) (General Case)

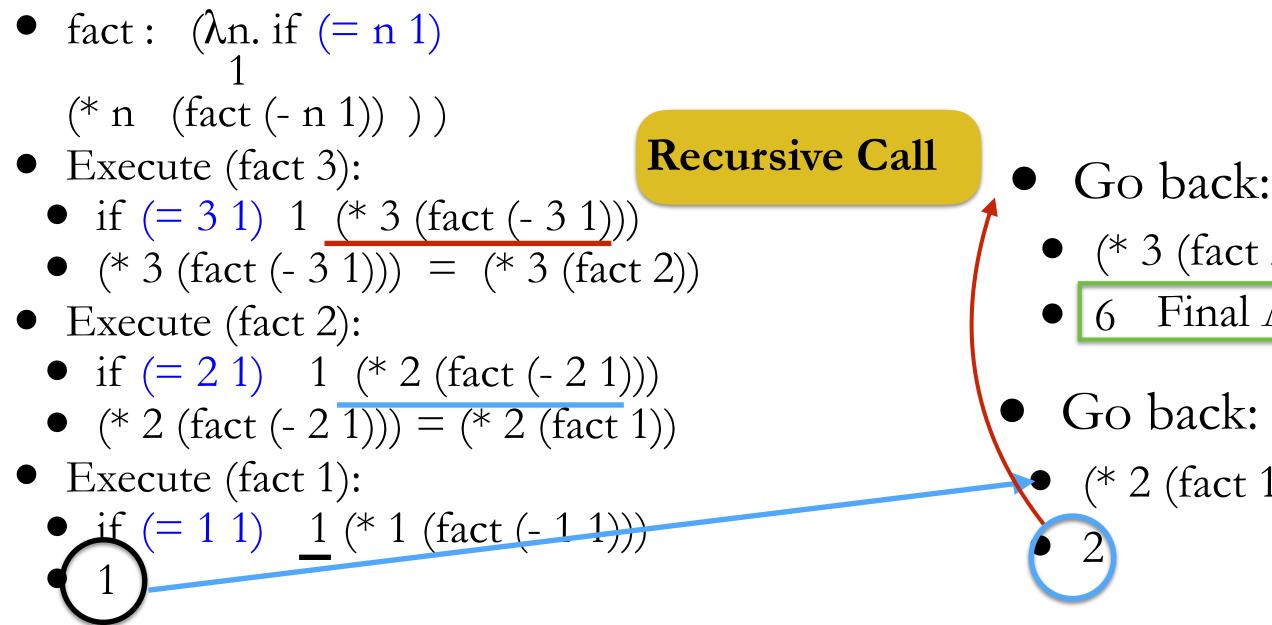
(Simple Case)

- Factorial 1 = 1 [SIMPLE CASE]
- Factorial n = n * Factorial (n-1) [GENERAL CASE]
- Fact 3: *(shorthand for Factorial 3)*
 - **–** Fact 3 = 3 * Fact 2
 - Fact 2 = 2 * Fact 1

– Fact 1 = 1

- Go back up:
 - Fact 2 = 2 * 1
 - **–** Fact 3 = 3 * 2 * 1
- Answer = 6.
- Each line:
 - Does ONE thing
 - Passes on the rest of the problem (to itself)

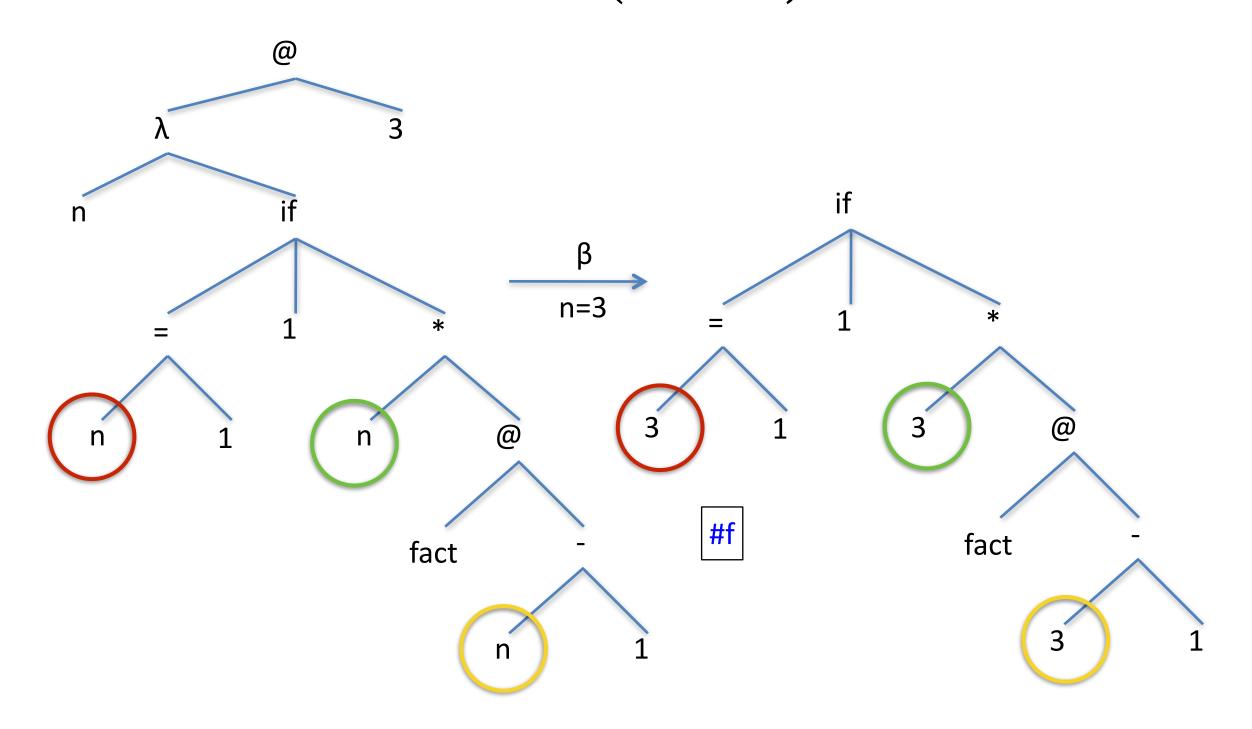
Implementation and Execution



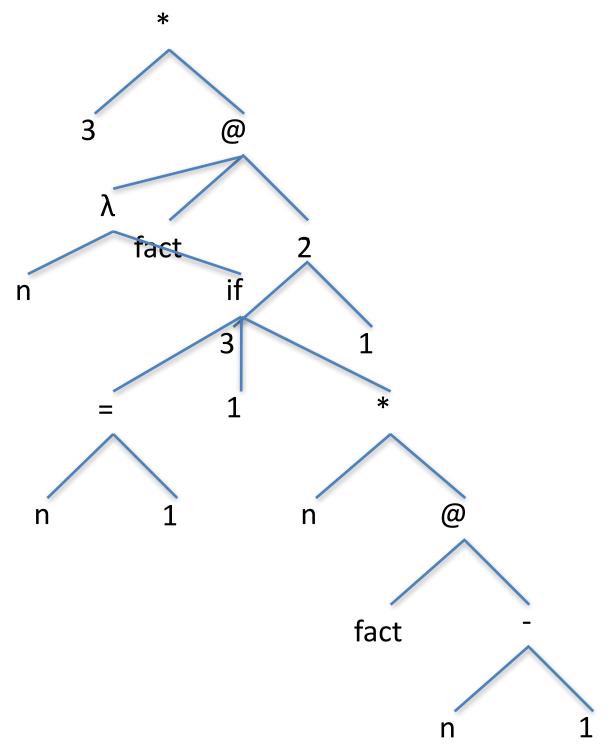
• (* 3 (fact 2)) = (* 3 2)6 Final Answer

• (*2 (fact 1)) = (*21)

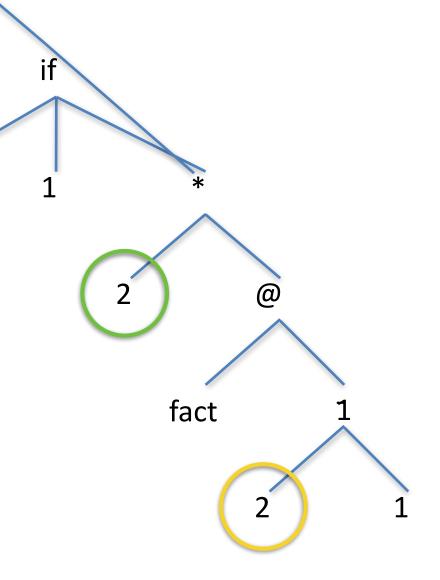
AST (fact 3)



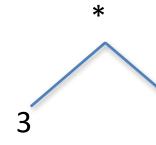
AST (fact 3)

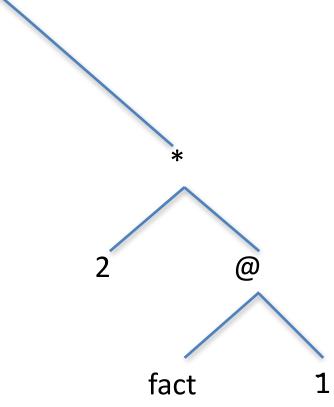


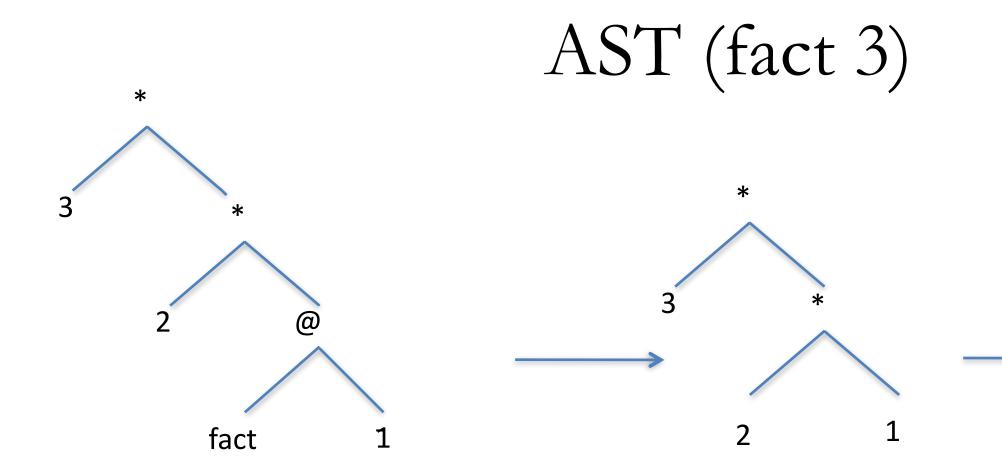
AST (fact 3) * * @ 3 3 2 β n n=2 * 1 2 1 @ 1 n n #f fact n 1

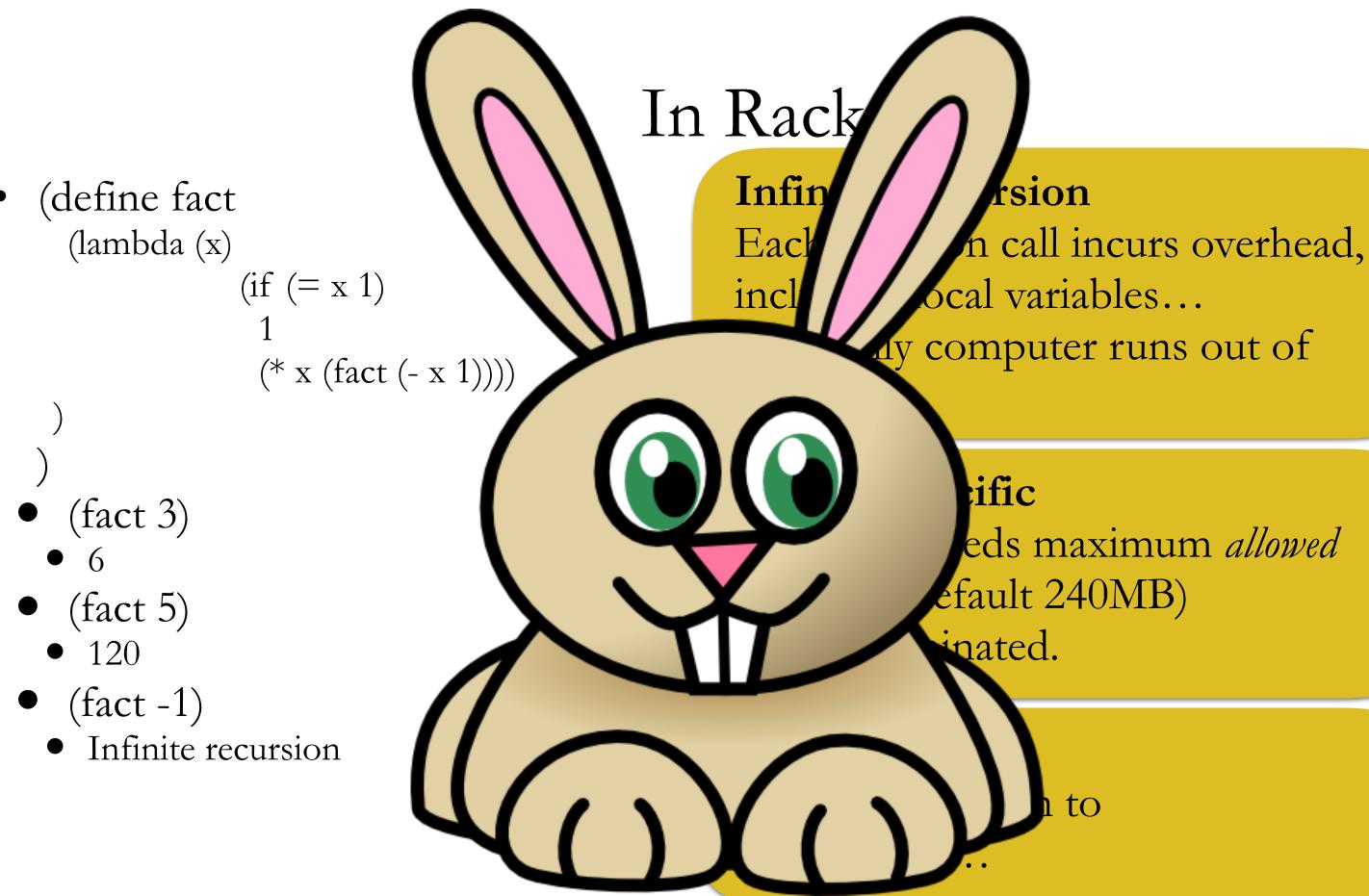


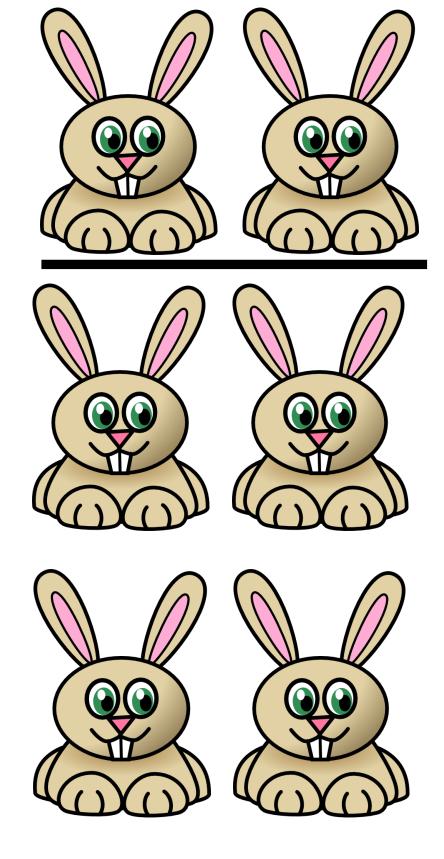
AST (fact 3)



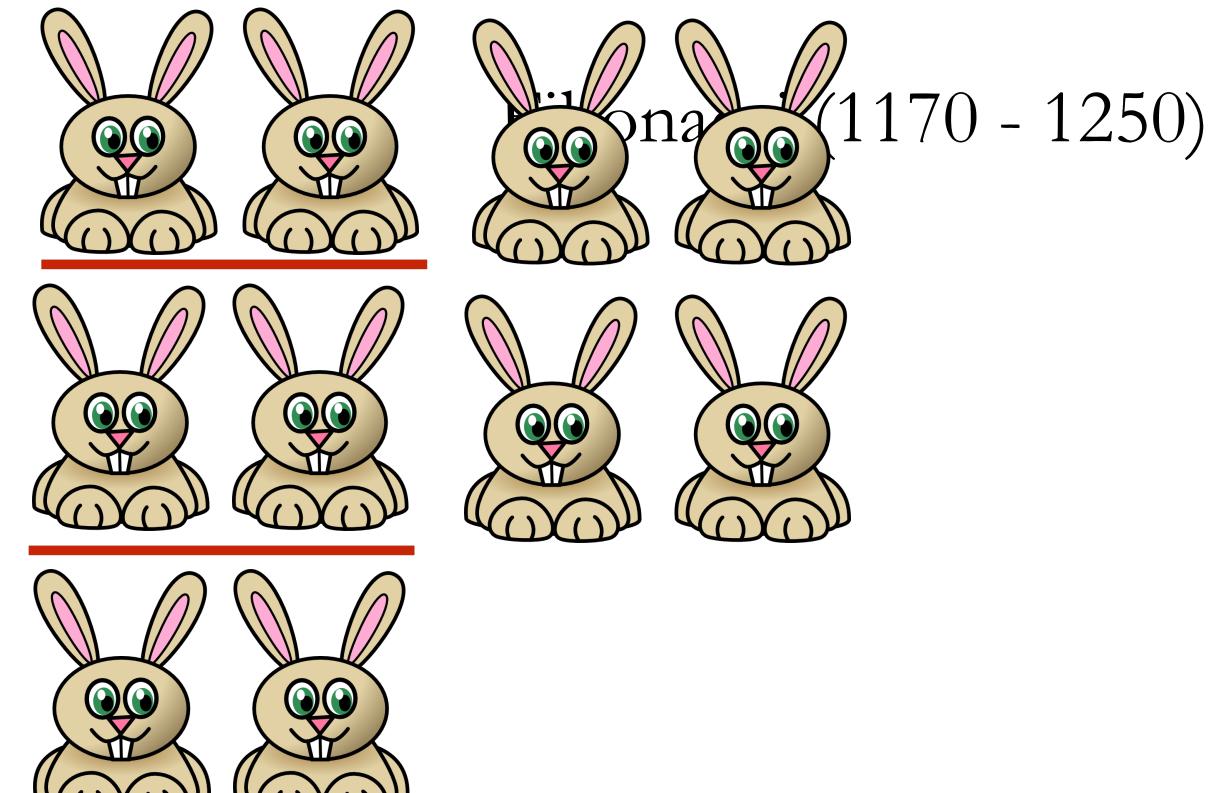


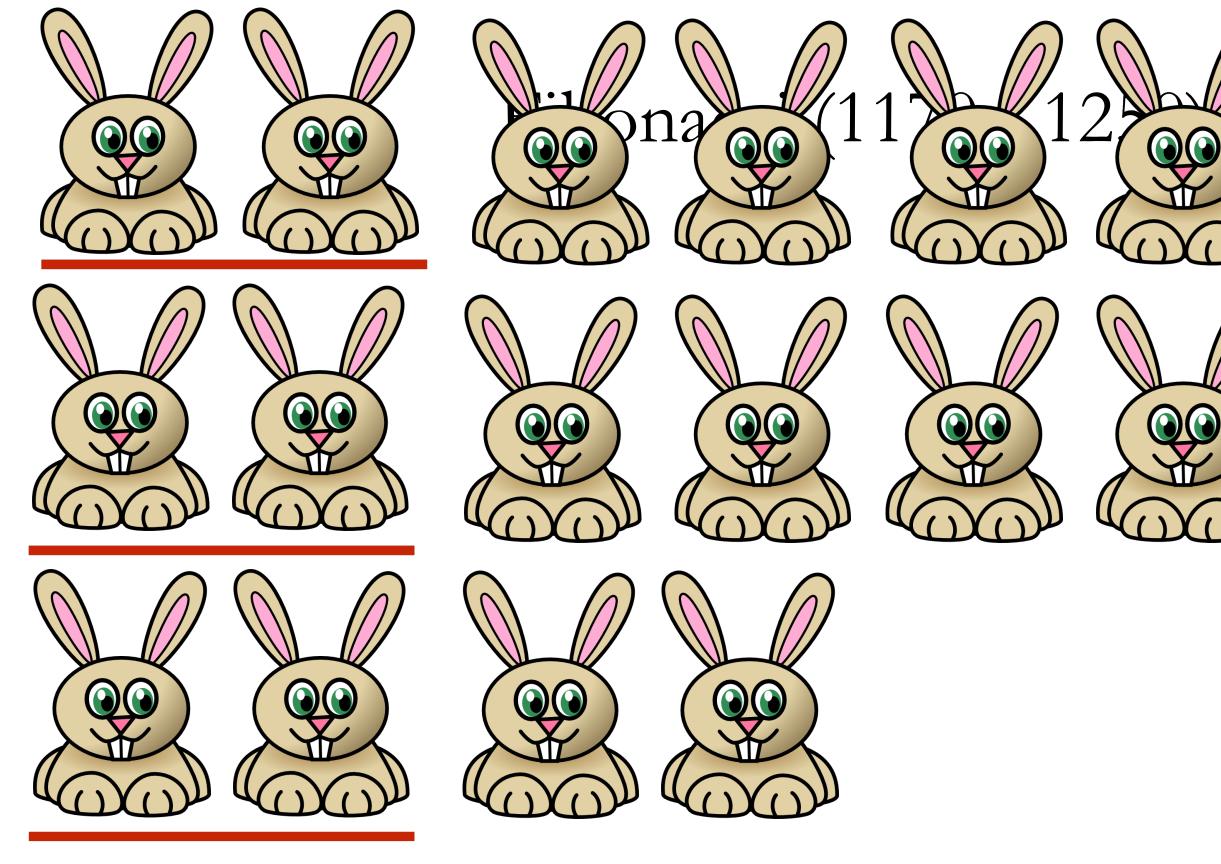


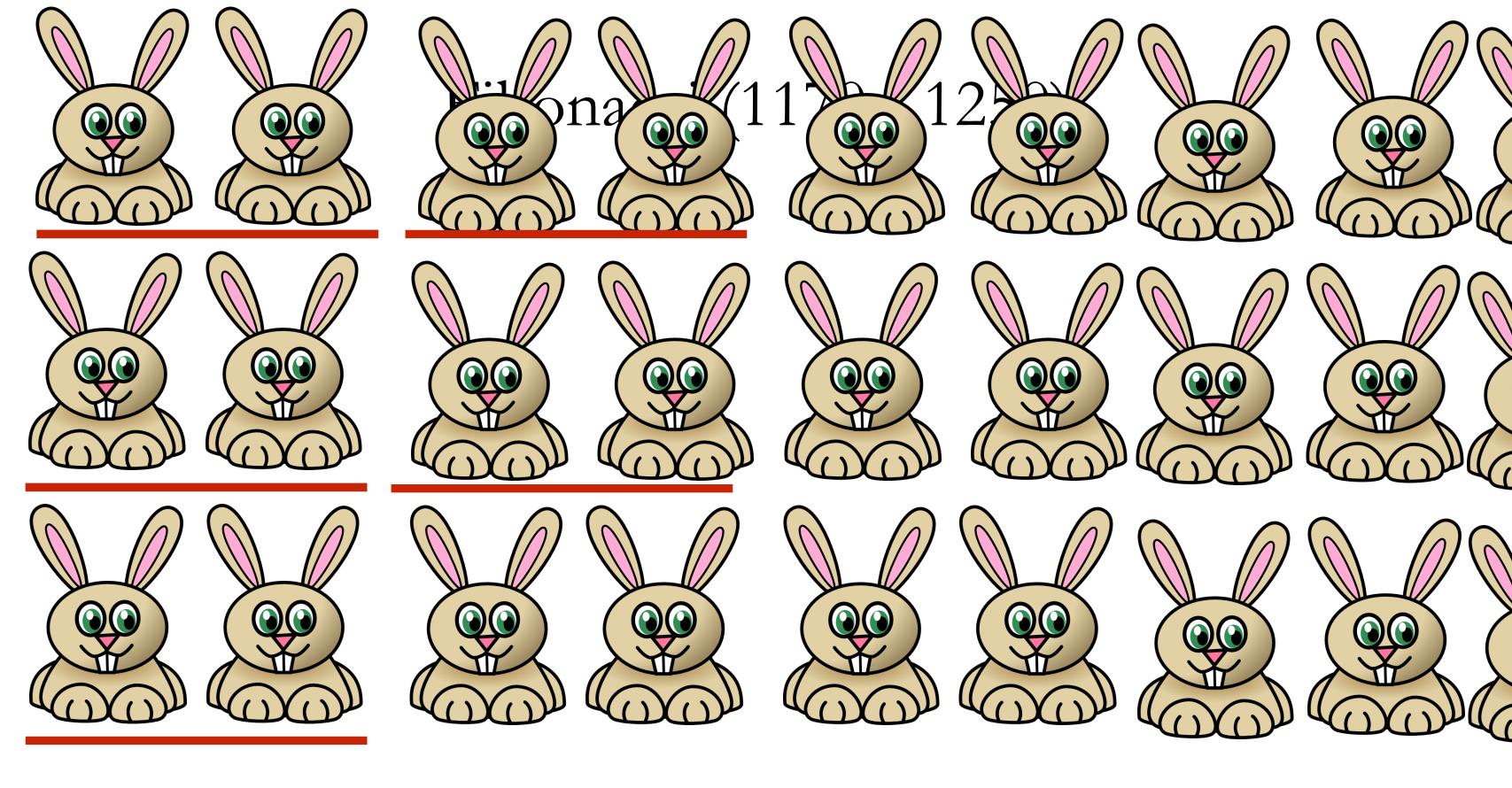




Fibonacci (1170 - 1250)







Fibonacci Series

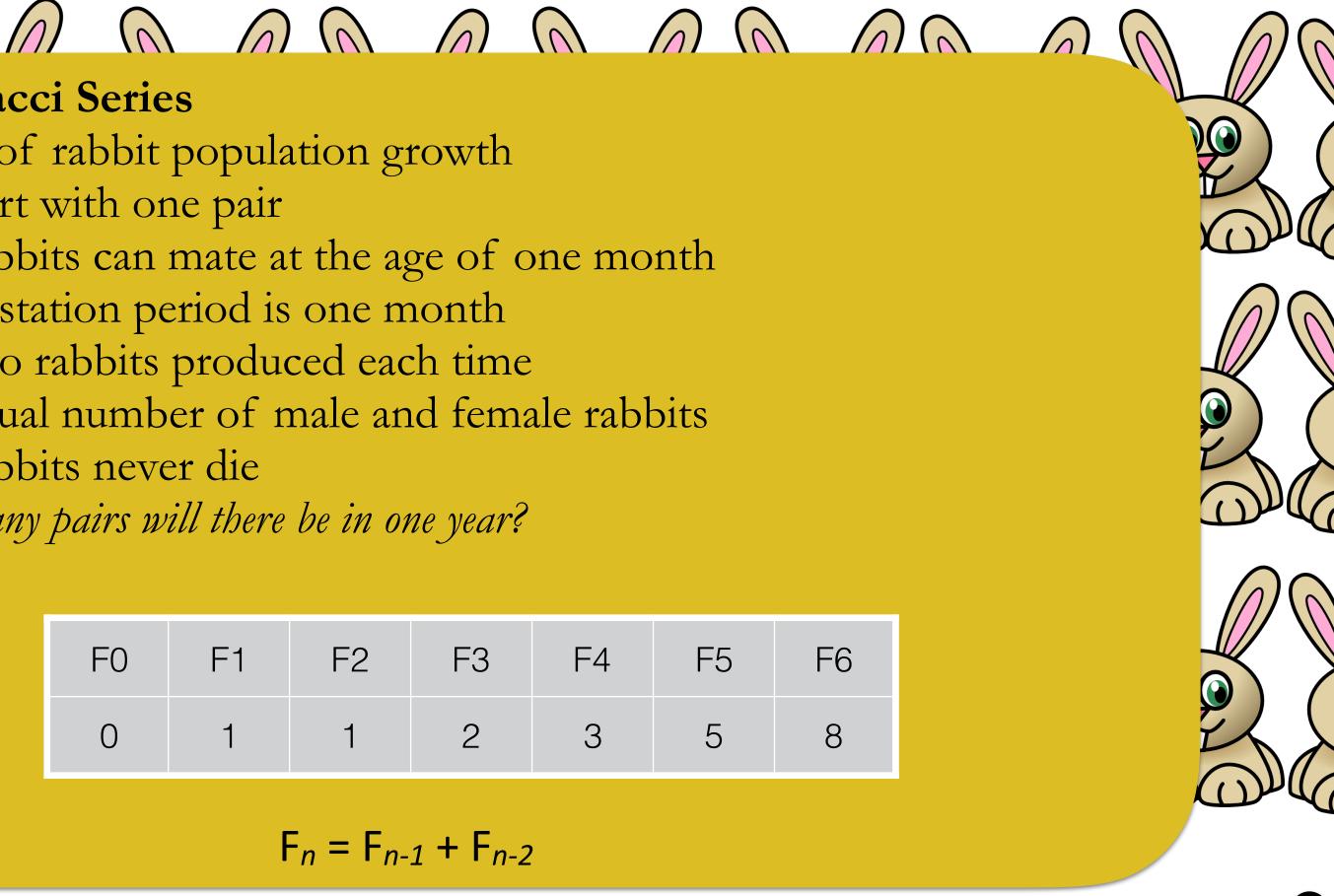
Model of rabbit population growth

- Start with one pair
- Rabbits can mate at the age of one month
- Gestation period is one month
- Two rabbits produced each time
- Equal number of male and female rabbits
- Rabbits never die

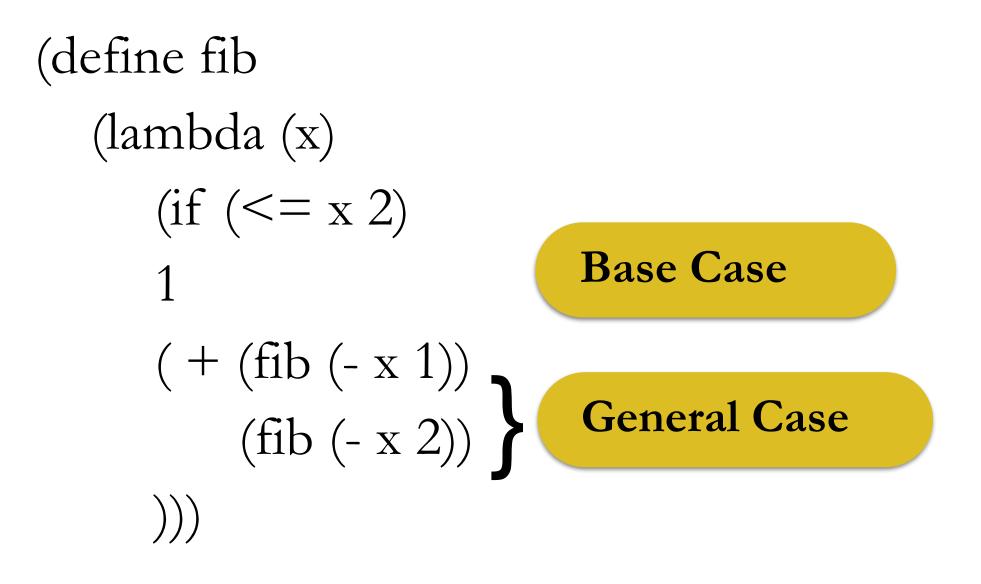
How many pairs will there be in one year?

FO	F1	F2	F3	F4	F5	F6
0	1	1	2	3	5	8

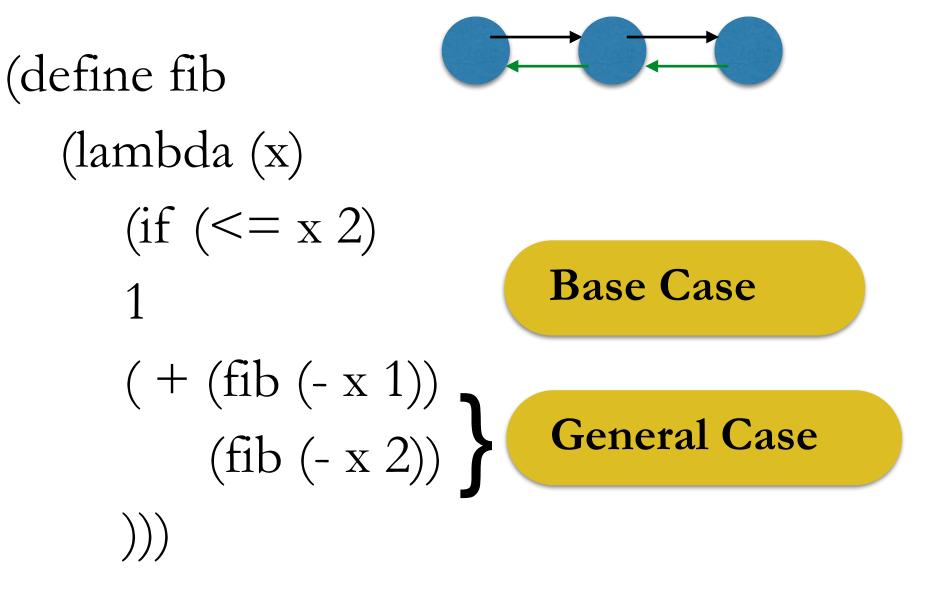
 $F_n = F_{n-1} + F_{n-2}$

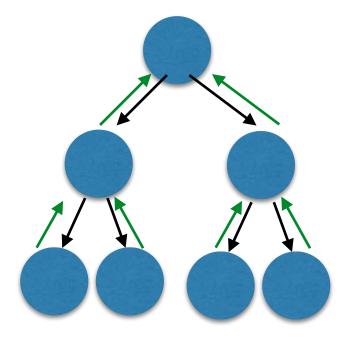


Fibonacci Series



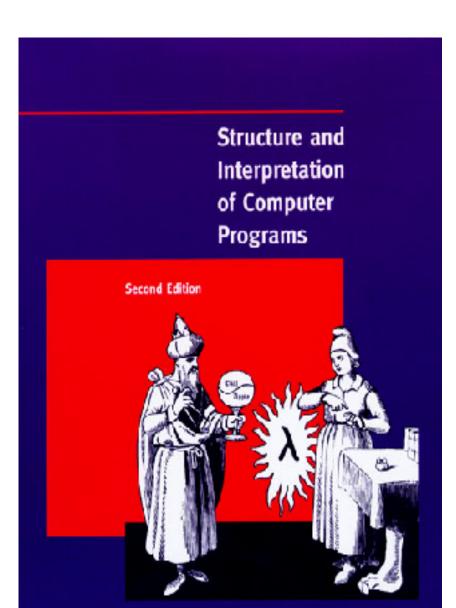
Fibonacci Series





Additional Reading on Recursion

- Given in "Reference Material"
 On the class website
- <u>Section 1.2 Procedures and the</u> <u>Processes They Generate</u>
- Implement and understand two different implementations of **factorial.**
- Also attempt Exercise 1.9.

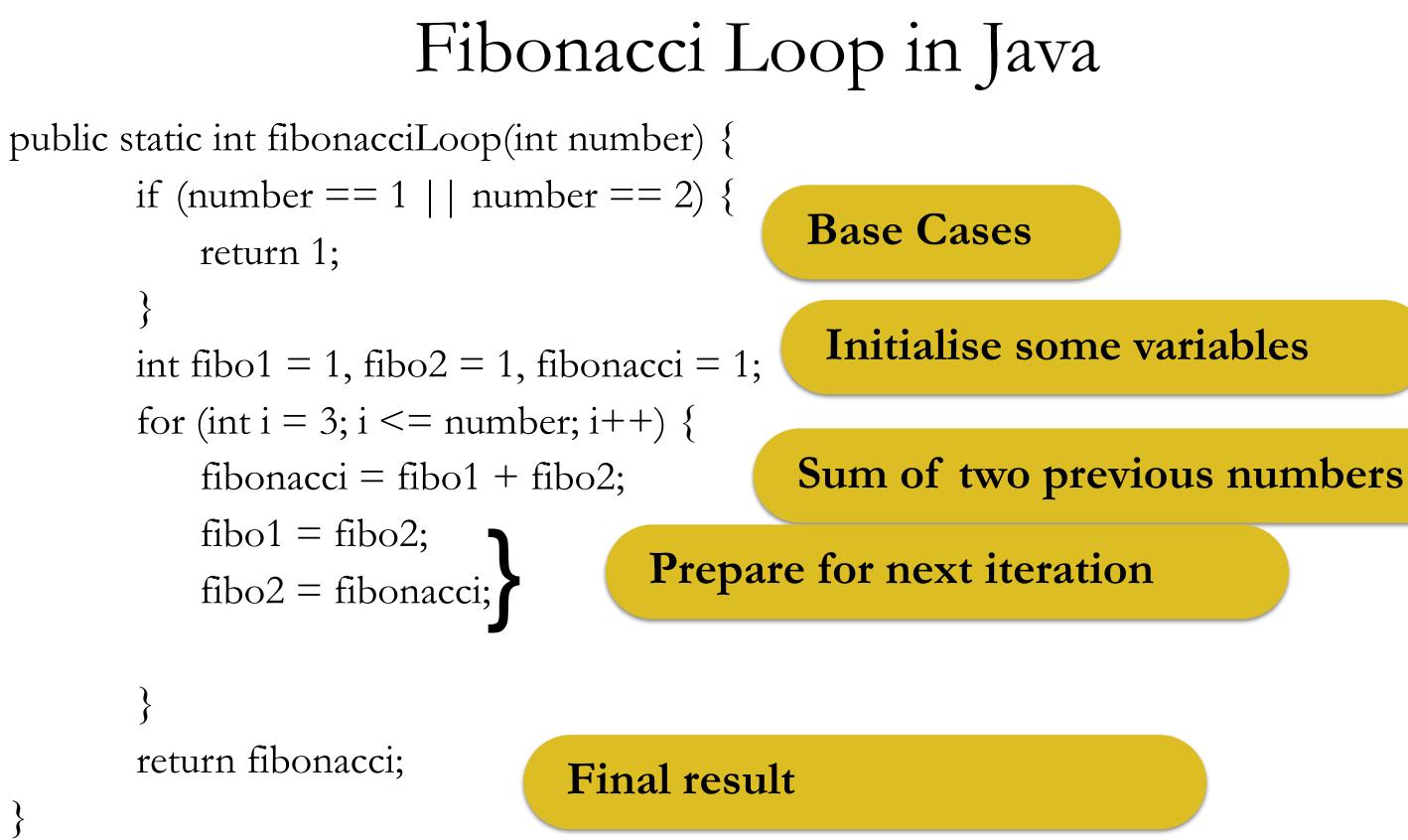


Harold Abelson and Gerald Jay Sussman with Julie Sussman

Recursion and Iteration (loops)

- Iteration *may sometimes* replace recursive function **int** fact=1; **for (int** j=arg; j>1; j--) fact = fact * j;
- But not always!
 - Sometimes not trivial to replace a recursive function. - For example browsing a tree of item categories on argos.ie or
 - amazon.com
 - Useful exercise: implement Fibonacci in Java

Web crawler/spider/Googlebot Visit every page in a hierarchy



Run time

number	fibonacci	fibo1	
(initial)	1	1	
3	2	1	
4	3	2	
5	5	3	
6	8	5	
7	13	8	

fibo2

Solving problems recursively

- Identify the base case; then identify the general case
- Not always easy – General case may be difficult to formulate
- Example: Add numbers from $0 \dots n$.
 - Base Case/Terminating Case/Simple case
 - 0 ... nothing to add
 - i.e. sum(0) = 0
- General case:
 - sum(n) = n + (n 1) + (n 2) + ... + 0 $sum(n-1) = (n-1) + (n-2) + \dots + 0$
 - Thus, sum(n) = n + sum(n-1)

Solving problems recursively

• Putting it together: sum: λn . if (= 0 n) = 0(+ n (sum (- n 1)))

• sum(n) 0 1 3 6 10 ...

• n 0 1 2 3 4 ...

• fact(n) 0 1 2 6 24 ...

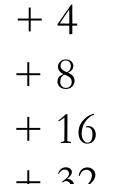
- Write a recursive function that generates the sequence
- i.e. for a given value of n, it produces sum(n) or fact(n).

Generating Functions from Sequences

- Using λ calculus & recursion for design - Try to describe what is happening with sequence
- Example: explain the following sequence
 - -n 1234 ...
 - -f (n) 1 5 9 13 ...
 - Base?
 - f(1) = 1
 - General?
 - No easy way to spot; however, *usually* f(n) is somehow related to f(n-1)
 - Here, each number is 4 bigger than the previous one.
 - Therefore, f(n) = f(n-1) + 4

- Mathematically: -f(1) = 1-f(n) = f(n-1) + 4
- Recursive λ calculus function: - f : λ n. if (= n 1) 1 (+ (4 (f (- n
- Another example:
 - **-**n 1 2 3 4 ...
 - -f (n) 1 5 13 29 ...
 - -f(1) = 1. (won't always be) -f(n) = ?
 - -Usually f(n) = calc(n) + f(n-1)(but not always...)

- Write out:
 - -n 1 2 3 4 ...
 - $-f(n) 1 5 13 29 \dots$
 - f(1) = 1
 - f(2) = 5 = f(1) + 4
 - f(3) = 13 = f(2) + 8
- $(+ (4 (f (-n 1)))) \cdot f(4) = 29 = f(3) + 16$
 - f(5) = 61 = f(4) + 32
 - -4, 8, 16... powers of 2.
 - Aside:
 - Power of two in λ calculus?
 - λx. (* x x)
 - Only squares; n powers of two



• Only squares; need to generate higher

• A more useful function:

 $-(pow x y) \qquad (i.e. x^y)$

- Base case: $x^0 = 1$, thus (pow x 0) = 1

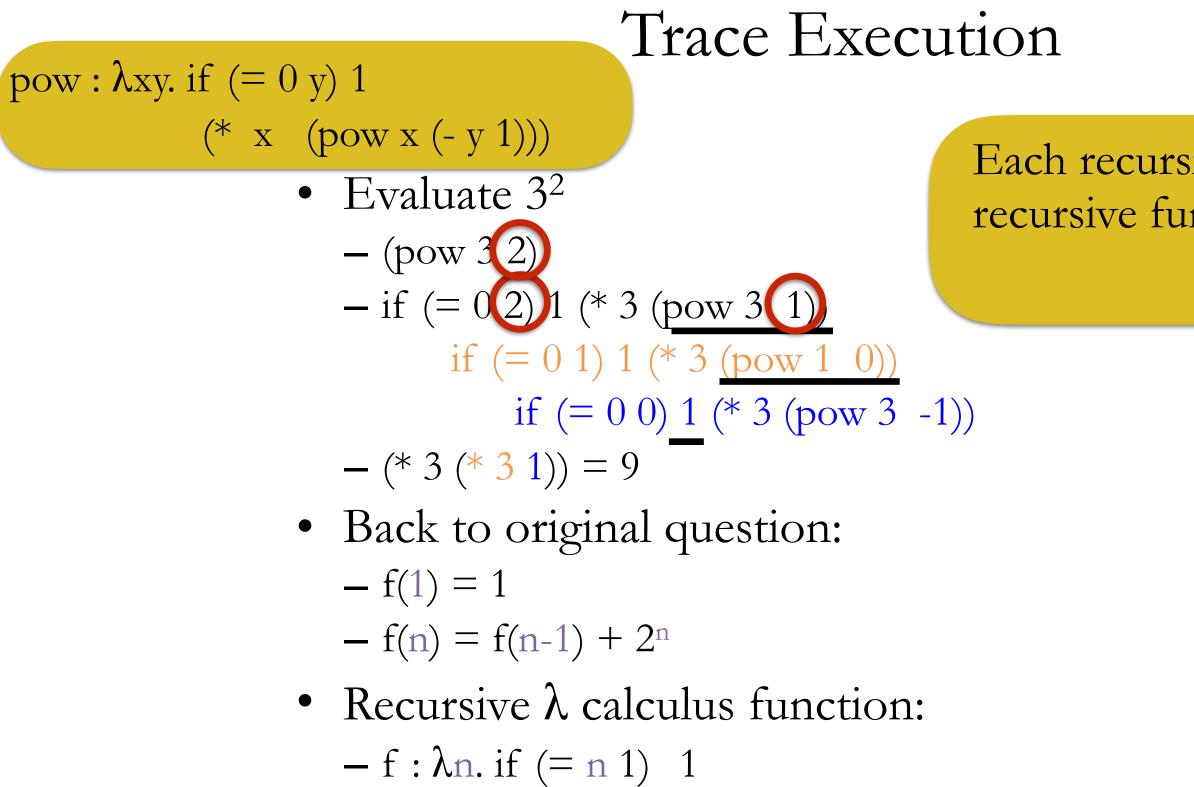
- General case: (* x (pow x (-y 1))

- Because $x^y = x * x^{y-1}$
- Notice:

– Two variables

- Only one controls recursive call
- Recursive λ calculus function:

 $-pow : \lambda xy. if (= 0 y) 1$ (* x (pow x (- y 1)))



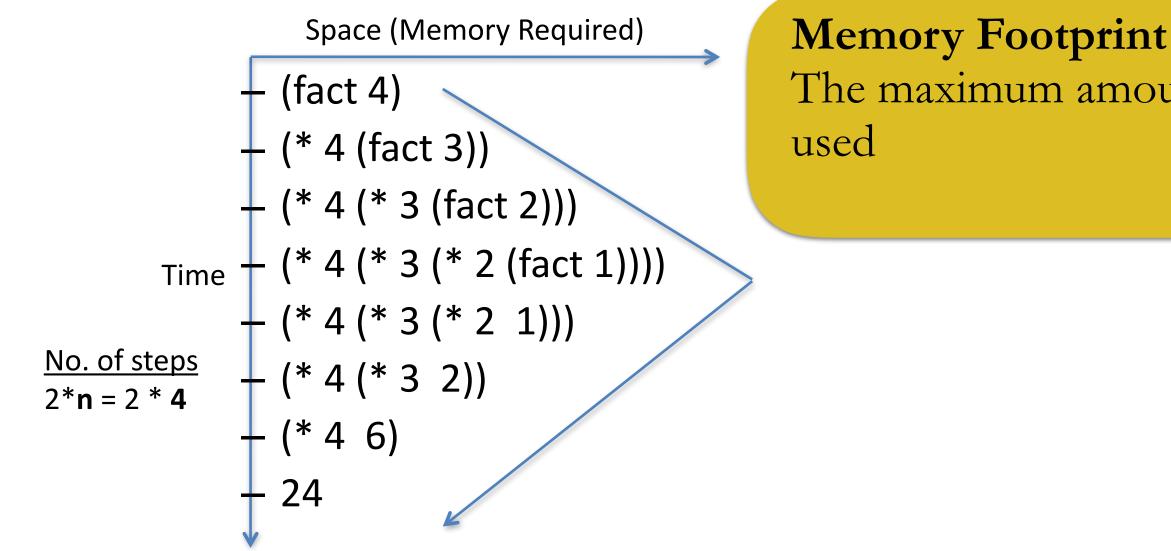
(+ (f (-n 1)) (pow 2 n))

Each recursive call to f uses another recursive function (pow)

Procedures and Processes

- *Procedures*: another term for functions.
- Function call generates a computational *process* - i.e. a set of steps required to execute the code
- Important to understand this process to become an expert programmer
 - i.e. not all code is executed
 - sometimes code is executed multiples times
- Possible to examine the *shape* it generates.

• Reminder: factorial -(fact n) = (*n (fact (-n 1)) (General Case))- Example execution: (fact 4)



The maximum amount of memory

Factorial with a non-recursive process

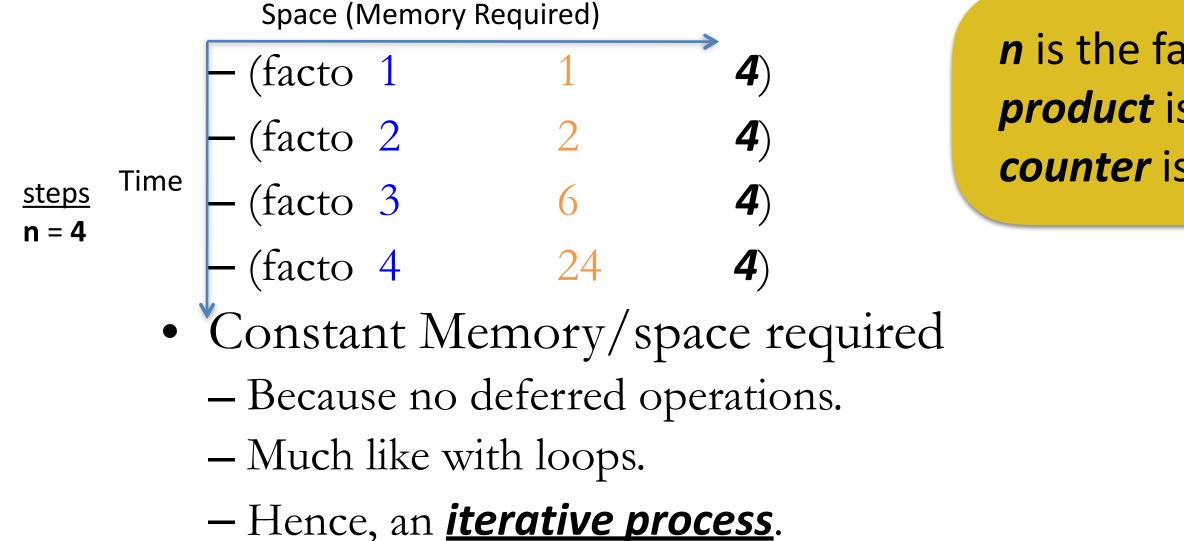
- Avoid deferred operations:
 - Keep a running product with every recursive call - Much like with loops/iterations. Recall: int product=1; int counter=1; while (counter <= n) { product = product * counter; counter++; }

Product
1
2
6
24

<u>Note</u>: No deferred operations => iterative process.

Factorial: non-recursive process with a recursive function

• (facto counter product \boldsymbol{n}): (say $\boldsymbol{n} = 4$)



n is the factorial we're calculating*product* is the running total*counter* is the number of steps

A recursive function with an iterative process

(define facto (lambda (counter product **n**) (if (> counter n) product (facto (+ counter 1)) (* counter product) n

Final Exam

- 2.5 hours
- Answer four out of five questions
- 2 questions involving recursion.
- All material is examinable
 - Some questions based on practical/tutorial questions
 - Some general questions
 - Some definitions
 - Understanding rather than memorising

Final Exam

- Read questions carefully before starting
- Revisit mid-term questions carefully.
- Show **all** your work
- Calculators are permitted, but only actual calculators
- Always explain definitions with examples.
- No labs/tutorials in week 13.
- Check class website every day before the exam