
CS4111 - Computer Science
Lecture Set 3: Local and global variables

1

So far…
• Examples have been relatively straightforward

– e.g. Only dealing with single function, no global variables

– assuming single processing core

• From lecture 1:

– How do I design a program that can’t be tested?

2

Why this matters

3

Nvidia V100 GPU Accelerator (Mezzanine)
5120 cores

Necessary Tools
• Hundreds of functions

• Millions of copies of the same function running at the same time

• Functions taking other functions as parameters

• We need the ability to keep all these moving parts straight

4

Local and Global Variables
• > (define x 2)
• > (define addx (lambda (y) (+ y x)))
– y is local, x is global

• > (addx 4)
• 6
• > x
• 2
• > (define x (addx 4))
• > x
• 6

5

Using ASTs

6

λ

@

y +

y x

4
β

y=4

+

4 2

Local and global variables in λ calculus

• Some shorthand...
– λx. E
– Function that takes one argument
– Don't care what function does

• λx. (E F)
– Same as above, but two distinct parts to function

• Examples:
– λx. + x y ≡ λx. E
– E = + x y

7

• λx. + x y ≡ λx. E F
– E = + x, F = y
– OR, E = +, F = x y

• λx. x ≡ λx. E

• E = x

• But, λx. x <> λx. E F

8

• Terminology:
– Global variable ≈ free variable
– y is free in (λx. + x y)

– Local variable ≡ bound variable
– x is bound in (λx. + x y)

Free Variables

9

• X is free in (E F) if X is free in E or in F.
• e.g from above, is y free in (+ x y)?
– E = + x, F = y.
– Not in E, but is in F.
– It DOES occur free in (E F).

• Notice:
– E = +, F = x y.
– Not in E, but is in F.
– It DOES occur free in (E F).

Bound Variables

10

• X is bound in (E F) if X is bound in E or in F.

• x occurs bound in (λy. E) if
x=y AND x occurs free in E
OR, x is bound in E.

• Examples:
Is x bound in (λx. + x y)?

x is in the parameter list (λx) and it does appear free in (+x y)
Thus, x is bound in (λx. + x y).

x is a local variable in (λx. + x y).

Why two different letters?
To reflect generality

NOTE: Variable x is bound,
NOT the parameter x.

• Is y bound in (λx. + x y)?
– It doesn't occur in parameter list
– Other possibility? Bound in E?
• E = + x y

– Occurs free in E, so is NOT bound.

• More Examples:
e1: + x 3 x is free in e1
e2: (+ x) 3 (consider e2 = E F)
• Free in E = (+ x), NOT free in F = 3
• Therefore, free in e2

11

NOTE: Not Free ≠ Bound!
λx. + x 1
y is neither free nor bound.

Question: How could y be
bound in E?
Will address on next slide.

• Is y bound in (λx. + (λy. + 3 y) x 2)?
– It doesn't occur in parameter list
– Other possibility? Bound in E?
• E = (+ (λy. + 3 y) x 2)
• It does appear in the parameter list
• It is free in the body (+ 3 y)
• Therefore, it is bound in E.

• So, yes, y is bound in (λx. + (λy. + 3 y) x 2)

• Nested function

• ((λx. + (λy. + 3 y) x 2) 7)

• (+ (λy. + 3 y) 7 2)

• (+ (+ 3 7) 2)

12

Why didn’t we
evaluate (λy. + 3 y)
first?
Because it isn’t a
redex; it is missing an
argument.
Will revisit order of
evaluation soon.

• Different order of evaluation

• ((λx. + (λy. + 3 y) x 2) 7)

• ((λx. + (+ 3 x) 2) 7)

• (+ (+ 3 7) 2)

• (λx. + x 3) x
 E F
• x free or bound?
• Bound in E, free in F
• They are two different x’s. The same name does

not always mean same variable.

13
x 3

+x

λ x

@

x has to have a value for this
lambda to be a redex.
e.g.
(define x 4)

• (define x 2)

• ((λf. f (* 1 3) (+ 4 5) x) ((λxyz. (* 2 x)))
• Which x is free and which is bound?

• ((λf. f (* 1 3) (+ 4 5) x) ((λxyz. (* 2 x)))
– x is free and x is bound.

14

f

λ

@

@

f

1 3

*

4 5

+ x

λ

2 x

*x y z

15

f

λ

@

@

f

1 3

*

4 5

+ x

λ

2 x

*x y z

16

@

1 3

*

4 5

+ xλ

2 x

*x y z

β

17

@

3 9 xλ

2 3

*

x y z

(define x 2)

2

β

x=3, y= 9, z = 2
= 6

2 x

*

Recall lifetime diagrams (p. 14) xyz
 > (define x 3)
 > (define add1 (lambda (x) (+ x 1)))
 > (add1 x)

18

(define add1 (…

x exists

x exists

Racket
(define x 3)

(add1 x)

Naming variables

• Variables with the same name are not necessarily the same
variable

• Does not imply that two variables are the same
– To avoid confusion better to keep different names

 > (define x 3)
 > (define add1 (lambda (x) (+ x 1)))
 > (add1 x)
 4
 > x
 3

19

Formally in λ calculus

• β reduction means passing arguments to a lambda.
• Remove the λ and parameters list (e.g. λxy.) and in the

resulting body, replace the free variables with the arguments.
(λx. + x 1) 4
The body without λx. is (+ x 1)
In the absence of λx. part, x is free in (+ x 1)
Replace x with 4
=> (+ 4 1) (redex)
=5
(λx. + x 1) 4 β (+ 4 1) = 5

20

Nested functions
• ASTs/Prefix expressions can have multiple levels of

nesting
– E.g. (λx. * (+ 2 3) (- 2 (* 3 4))) 5

• But also:
(λx. + (λy. + 2 y) x 4) 3
Beta reduction replaces free occurrences in the body.
[x is free, after removing the (λx) part].
x=3 β + (λy. + 2 y) 3 4
y=3 β + (+ 2 3) 4
= 9

21

• A more confusing but identical example:

– (λx. + (λx. + 2 x) x 4) 3

• Replace only FREE occurrences, after removing λx.

x=3 β + (λx. + 2 x) 3 4
Note x is not replaced, because it is still bound (to
lambda starting with λx).

x=3 β + (+ 2 3) 4
=9

22

Passing lambdas as arguments

• (λf. f 3) (λx. + x 1)
• Argument is a function (lambda)
– β reduction replaces free occurrences of f.
– So we get:
• (λx. + x 1) 3

– Another β reduction follows:
• + 3 1 = 4

23

Passing Lambdas as Arguments

• Is this a strange thing to do?
– No, it is an ENORMOUSLY powerful thing in

programming
– Usually modify functionality by passing data
– Can modify functionality by passing code
– GPUs are often programmed in this way

• Extremely difficult to do in imperative programming
• Simple to do in functional programming

24

25

@

f 3

λ

f

@

+

x 1

λ

x

(λf. f 3) (λx. + x 1)

26

@

f 3

λ

f

@

+

x 1

λ

x

(λf. f 3) (λx. + x 1)

27

@

3

+

x 1

λ

x

(λf. f 3) (λx. + x 1)

β conversion
β conversion

x = 3f = (λx. + x 1)

+

3 1

= 4

Another Example of Passing lambdas
• (λx. + 2 (λy. y 5) x) (λz. + 1 z)

28

λ

x

+

5

λ

y @

@

y

2 @

x

λ

+

1 z

z

Another Example of Passing lambdas
• (λx. + 2 (λy. y 5) x) (λz. + 1 z)

29

λ

x

+

5

λ

y @

@

y

2 @

x

λ

+

1 z

z

β
x = λz. + 1 z

Another Example of Passing lambdas
• (+ 2 (λy. y 5) (λz. + 1 z))

30

+

5

λ

y @

y

2 @
λ

+

1 z

z

Another Example of Passing lambdas
• (+ 2 (λy. y 5) (λz. + 1 z))

31

+

5

λ

y @

y

2 @
λ

+

1 z

z

Another Example of Passing lambdas
• (λx. + 2 (λy. y 5) x) (λz. + 1 z)

32

+

5

λ

y @

y

2
λ

+

1 z

z

Another Example of Passing lambdas
• (+ 2 ((λz. + 1 z) 5))

33

+

5

@2

λ

+

1 z

z

Another Example of Passing lambdas
• (+ 2 (+ 1 5))

34

+

5

2 +

1

• Remember: Functions in λ calculus and ASTs (usually)
don't have names

• Racket can use them
– Useful for reusing functions
– Useful for debugging
– Slightly more longwinded
• > (define t (lambda (f) (f 3)))
• > (t (lambda (x) (+ x 1)))
• 4

35

• > (define t2 (lambda (f) (f 2 3)))
> (t2 +)
(+ 2 3)
5
> (t2 7)
Error: attempt to call a non-procedure [(7 2 3)]

• Lesson?
– Anything can be passed as a parameter: numbers,

variables, functions, operators
– Syntax the same in lambda calculus, AST and Racket
– Not consistent in imperative programming
• Very different when passing a function to a function

36

• Formal Notation for β reduction:

– (λx. E)a β E[a/x]
–Meaning: in E, replace free occurrences of x with a

• Consider: (λx. + x 1) and (λy. + y 1)
– Are they the same?
– Yes - names don't matter.

– Converting one into another: α-conversion

– E.g. (λx. + x 1) α (λy. + y 1)
–Note: bi-directional arrow: two way process

37

• However, if we replace x with y in:
– (λx. + x y)
–We get: (λy. + y y)
– Not correct. Why?
• Because y is free in (λx. + x y)

–What about:
• (λx. + x (λy. + y 1) 2) α (λy. + y (λy. + y 1) 2)
• This is fine
• y is NOT free in the body of the lambda on left side.

• Formal Definition:
– λx. E α λy. E[y/x], IF y does not already exist free

in E.

38

Utility of α-conversion

• (λf. (λx. f (f x))) x
• β-reduction=>(λx. x (x x))
– Erroneous.
– What to do?

• Use α-conversion to avoid confusion:
– convert x into y inside the nested lambda.
– (λf. (λy. f (f y))) x
– β-reduction=> (λy. x (x y))
– Correct

39

δ-conversion and Normal Form

• (λx. (+ x 1)) 2
 β (+ 2 1)
 δ 3

• (F a1 a2) δ result, where F is a built in operator
• β-reduction puts values in, δ-conversion evaluates them
• The result after full evaluation is said to be in Normal

form
– E.g. (+2 1) = 3 is in Normal form
– No more redexes left.

40

More examples of δ-conversion

• reducing redexes to normal form e.g.:
(* 3 (+ 5 2))

 δ (* 3 7)
 δ 21
21 is in normal form

41

β-reduction – an interesting example

• (λf. (λx. f 4 x)) (λyx. + x y) 3
– (λf. (λx. f 4 x)) (λyx. + x y) 3
– β (λx. (λyx. + x y) 4 x) 3
– β (λyx. + x y) 4 3
– β (+ 3 4)
– δ 7

• Racket Code
– (define Lf (lambda (f) (lambda (x) (f 4 x))))
– (define Lyx (lambda (y x) (+ x y)))
– ((Lf Lyx) 3)

42

When to evaluate arguments- The effect

• Consider function
– D: (λx. x x)
– In Racket: (define D (lambda(x) (x x)))

• Evaluate D D
– (λx. x x) (λx. x x)

– β (λx. x x) (λx. x x)

– β (λx. x x) (λx. x x)
– Infinite calls
– Try it in Racket using (D D)

43

When to evaluate arguments- The effect

• Consider (λx. 3) 7
– β 3
– Result is 3; no matter what the argument is.
– Evaluating the argument is needless.

• Consider (λx. 3) (D D)
– Evaluate the argument first? Infinite calls.
– Otherwise, the answer is just 3.

44

Order of evaluating arguments

• How do we evaluate simple expressions?
– So far “innermost”
– e.g. (+ (* 2 3) 4)

• Applicative Order (Eager Evaluation):
“leftmost innermost”.
i.e. try to evaluate the leftmost redex;
Immediately go to the innermost level of nesting
(λxy. + x y) (+ 1 2) (+ 3 4)
=(λxy. + x y) 3 (+ 3 4)
=(λxy. + x y) 3 7

45

Lazy Evaluation/Normal Order

• Back to (λx. 3) (D D):
– Applicative Order forces evaluation of (D D) even

though it is not needed
– Arguments are evaluated EXACTLY ONCE

• Another Strategy: Normal Order
Reduce “leftmost outermost”. i.e. work with the
outermost bracket level whenever possible.
(λx. + x 1) (+ 2 3)
β (+ (+ 2 3) 1)
Can not work at the outermost level now. So reduce the
inner (nested) redex.
=(+ 5 1) = 6

46

• + is a “strict” function:
– Requires all its arguments before proceeding further
– Forces evaluation of arguments even in lazy evaluation

• (λx. 3) (D D) with Normal Order
3
(D D) not evaluated

47

Implications 
– Applicative Order can cause infinite calls, and evaluate

arguments needlessly
– It evaluates arguments exactly once
• regardless of whether or not they are needed

– Normal Order only evaluates arguments when necessary
– It evaluates arguments zero or more times
• this might be more inefficient

–The dream: Fully Lazy Evaluation
• evaluate arguments zero or one times
• possible, but beyond the scope of this module

48

Another Example

• (λx. + x x) (* 6 2)
• Normal Order β reduction:

+ (* 6 2) (* 6 2)
+ 12 (* 6 2)
+ 12 12 = 24

• Applicative Order β reduction:
– Evaluate argument before β reduction; we get 12

+ 12 12
=24

49

