CS4111 - Computer Science

Lecture Set 3: Llocal and global variables

So far...

» Examples have been relatively straightforward
— e.g. Only dealing with single function, no global variables
— assuming single processing core

* From lecture 1:

— How do I design a program that can't be tested?

Why this matters

Rmax Rpeak Power
Rank Site System Cores (TFlop/s) (TFlop/s) (kW)

enter Sunway TaihuLight - Sunway MPP 10,649,600 93,0146 1254

In YWuxi sunway SW26010 260C 1.45GHz

China Sunway

J

NRCPC

2 National Super Computer Center Tianhe-2 [MilkyWay-2] - TH-IVB-FEP 3,120,000 33,862.7 54,9024 17,808
in Guangzhou Cluster, Intel Xeon E5-2692 12C
China 2.200GHz, TH Express-2, Intel Xeon Ph
J1S51F
NUDT
3 Swiss National Supercomputing Piz Daint - Cray XC50, Xeon E5-2490v3 361,740 19,590.0 25,3263 2,272
Centre (CSCS 12C 2.6GHz, Aries interconnect

Switzerland NVIDIA Tesla P1

b]
ol
(n)

4 DOE/SC/0zk Ridge National Titan - Cray XK7, Opteron 6274 16C 260,640 17,3%0.0 27, 112.

Laboratory 2.200GHz, Cray Gemini interconnect,

ro
(-
~L)

United States NVIDIA K20x

~

Cray Inc.

ho

20,132.7 7,890

5 DOE/NNSA/LLNL Sequoia - BlueGene/Q, Power BQC 1,572,864 17,173.

Necessary Tools

Hundreds of functions
Millions of copies of the same function running at the same time
Functions taking other functions as parameters

We need the ability to keep all these moving parts straight

I.ocal and Global Variables

> (define x 2)

> (define addx (lambda (y) (+ y x)))
— vy is local, x 1s global

> (addx 4)

§

> X

2

> (define x (addx 4))

> X

§

N
/N = N
/\

Local and global variables in A calculus

Some shorthand...
— AX.

— Function that takes one argument

T

— Don't care what function does

AX. (E F)

— Same as above, but two distinct parts to function
Examples:

—}\.X.‘|‘Xy = AX.]
— B =+xy

(L]

* Terminology:
— Global variable = free variable

Ax. +xy= Ax.EF — yis free in (Ax. + X V)
—E=+x,F=y — Local variable = bound variable
—OR,E=+F=xy — x 1s bound in (AX. + X y)

M. x= Ax. E

E=x

(L]
Y

But, Ax. x <> Ax. |

Free Variables

e Xistfreein (I')it X1sfreein I orin I

e c.g from above, is y free in (+ x y)?
= +x, F=w
— Notin [, butisin F
— It DOES occur free in (E F).
* Notice:
—-E=+TF=xvy
— Notin E, butisin F
— It DOES occur free in (E F).

Bound Variables

e X 1s bound in (I) if X 1s bound in

* x occurs bound in (Ay. E) if

(L]

x=y AND x occurs tree in |
OR, x1s bound in E.

o Examp__es:

(L]

Is x bound in (Ax. + x y)?

or in I

Why two different letters?
To reflect generality

x is in the parameter list (Ax) and it does appear free in (+x y)

Thus, x is bound in (Ax. + x y).

x is a local variable in (Ax. + x y).

NO”

'E: Variable x is bound,

NO”

" the parameter x.

* Isyboundin (Ax. + x y)?

— It doesn't occur in parameter list

— Other possibility? Bound in E?
e K =+ x y

Question: How could y be
bound in E?
Will address on next slide.

— Occurs free in E, so 1s NOT bound.

* More Examples:

el: + x3 X 18 free in el

e2: (+ x) 3 (consider e2 =
e Free in E = (+ x), NOT free in F

e Therefore, free in e2

E F)

=3

NOTE: Not Free # Bound!

Ax. +x 1
y is neither free nor bound.

Is y bound in (Ax. + (Av. + 3 y) x 2)?

— It doesn't occur in parameter list

— Other possibility? Bound in E?
* E=(+(\y. + 3y)x2)
* It does appear in the parameter list

o [t is free in the body (+ 3 y)

e Therefore, it 1s bound in E.
* So, yes, y is bound in (Ax. + (Ay. + 3 y) x 2)

Why didn’t we
evaluate (Ay. + 3 y)
first?

Because it 1sn’t a
redex; it 1S missing an
argument.

Will revisit order of

evaluation soon.

Nested function e Different order of evaluation
(Ax.+ (hy. +3y)x2) 7) * (= + (M +33)x2)7)
(+(7xy.-|—3y)72) . (()\X.+(+3X>2>7)

(+(+37) 2) e (F(+37)2)

O\,X. X 3)
E F
x free or bound?

Bound in E, free in F

They are two different x’s. The same name does
not always mean same variable.

/\ has to have a value for this

lambda to be a redex.

/\ e.g.
(define x 4)

13

(define x 2)

(M.f(*13)(+ 45 %) ((Axyz. (* 2 x)))
Which x 1s free and which is bound?

(M. £ (*13)(+ 45 %) ((Axyz. (* 2 x)))

1s free and x is bound

A
f @ X y Z %
f/N

14

16

(define x 2)

17

Recall lifetime diagrams (p. 14) xyz

> (define x 3)

> (define add1 (lambda (x) (+ x 1)))
> (add1 x)

Racket
(define x 3)

X ex1Sts

(define add1 (...
(add1 x)

X _ex1sts

18

Naming variables

Variables with the same name are not necessarily the same
variable

Does not imply that two variables are the same

— To avoid contusion better to keep different names
> (define x 3)

> (detine add1 (lambda (x) (+ x 1)))

> (add1 x)

4

> X

3

Formally in A calculus

* [5 reduction means passing arguments to a lambda.

* Remove the A and parameters list (e.g. Axy.) and in the
resulting body, replace the free variables with the arguments.

(Ax. + x 1) 4
The body without Ax. is (+ x 1)

In the absence of hx. part, x is free in (+ x 1)
Replace x with 4

=> (+ 4 1) (redex)

=5
—>

Ox.+x1)4 B (+41)=5

Nested functions

ASTs/Prefix expressions can have multiple levels of
nesting

E.g (\x. * (+23) (-2 (53 4)) 5

But also:

(Ax. + (Ay. + 2y) x4) 3

Beta reduction replaces free occurrences in the body.
[x is free, affer removing the (Ax) part].

x=3 P + Ay +2y)34

v=3 p +(+23)4

21

« A more confusing but zdentical example:

—(Ax. + (Ax. +2x)x4) 3

* Replace only FREE occurrences, after removing Ax.
—>
x=3 P +(Ax. +2x)34

Note x is not replaced, because it 1s s#4/ bound (to
lambda starting with Ax).

—>

x=3 [(+23)4
=9

22

Passing lambdas as arguments

o (M. f 3)

* Argument is a function (lambda)
— P reduction replaces free occurrences of f.
— So we get:
3

— Another [} reduction follows:
e +31=4

Passing .ambdas as Arguments

Is this a strange thing to do?

— No, it 1s an ENORMOUSLY powertul thing in
programming

— Usually modity functionality by passing data
— Can modify functionality by passing code

— GPUs are often programmed in this way

Extremely difficult to do in imperative programming

Simple to do in functional programming

(M. £ 3) Ox. + x 1)

A/@\;\
f/\@ AN\
N N

25

(M. £ 3) Ox. + x 1)

A/@\;\
f/\@ AN\
N N

26

(M. £ 3) Ox. + x 1)

. [} conversion
[} conversion > =4

f=(AX. +x1) A 3 x = 3 3 1

27

Another Example ot Passing lambdas

e (Ax. + 2 (Ay. v 5) x) (7»2 +12)

/\

/\ /\
/\ /\

/\
/\

Another Example ot Passing lambdas
e M. +2(\y.y5x) (hz.+12) s

B
/ \ X =MAz. + 1z

/\ /\
/\ / N\

/\
/\

Another Example ot Passing lambdas
¢ (+2(\y.y5) (Mz. + 1 2))

/\

W

/ "\
/>\/\

Another Example ot Passing lambdas

* (+2 (Ay.y5) (Ahz. + 1 2))

/\

S

/\,
/>\ a

Another Example ot Passing lambdas

e . t2Av.y5x) (Az.+12)

/\
/\
/>\ a

Another Example ot Passing lambdas

 (+2((Mz. +12)5))

/ N\
/\
/\
AN

Another Example of Passing lambdas
o (+2(+15)

2/+ \+
1/ \5

* Remember: Functions in A calculus and ASTSs (usually)
don't have names

e Racket can use them

— Useful for reusing functions

— Useful for debugging

— Slightly more longwinded
e > (define t (lambda () (f 3)))
e« > (t (lambda (x) (+x1)))
« 4

e > (define t2 (lambda (f) (f 2 3)))
> (t2 +)
(+ 2 3)
5
> (t27)
Error: attempt to call a non-procedure [(7 2 3)]

e J.essonr?

— Anything can be passed as a parameter: numbers,
variables, functions, operators

— Syntax the same in lambda calculus, AST and Racket
— Not consistent in imperative programming

* Very different when passing a function to a function

Formal Notation for [5 reduction:
—>

— (M. E)a p E[a/x]

— Meaning: in E, replace free occurrences of x with a

Consider: (Ax. + x 1) and (Ay. + y 1)
— Are they the same?

— Yes - names don't matter.

— Converting one into another: Q-conversion
- «—>

—Eg (Ax. +xD)7a” (Ay. +y1)

— Note: bi-directional arrow: two way process

However, it we replace x with y 1n:

— (Ax. + x V)
— We get: (Ay. +yy)
— Not correct. Why?
* Because y is free in (Ax. + x y)
— What about:
c(Mx. +x Ay. +y1)2) o> (Ay.+y (Ay. +y1)2)
 This 1s fine
e yis NOT free in the body of the lambda on left side.

Formal Definition:
>

—Ax. E o Ay. E[y/x], IF y does not already exist free
in E.

Utlity ot a-conversion

. (M. (Ax. £ (fX)) x
* P-reduction=>(Ax. x (X X))

— Erroneous.

— What to do?

e Use a-conversion to avoid confusion:
— convert x into y inside the nested lambda.
— (Kf. (7\}7. f (ty)) x
— ﬁ—reduction:> (Xy. X (X))
— Correct

O-conversion and Normal Form

Ox. (+ x 1)) 2
B+ 21)

—

0 3

(Fala2) O result, where F is a built in operator

P-reduction puts values in, 0-conversion evaluates them

The result after full evaluation is said to be in Normal
form

— E.g. (+2 1) = 3 1s in Normal form
— No more redexes left.

More examples of O-conversion

» reducing redexes to normal form e.g::
(3 (+ 52)
T (3 7)
S 21

21 is in normal form

41

P-reduction — an interesting example

* (M. (Ax. f 4X)) 3
— (M. (Ax. f 4 x)) 3
B (. 4%) 3

—>
-B 43

—>

—9 7
e Racket Code

— (define It (lambda (f) (lambda (x) (f 4 x))))
— (define)

—(@f 193

When to evaluate arguments- The effect

e Consider function

— D: (Ax. xX)

— In Racket: (define D (lambda(x) (x X)))
e Evaluate D D

— (Ax. X X) (AX. X X)

—F} (Ax. x X) (Ax. X X)

—F) (Ax. x X) (Ax. X X)

— Infinite calls
— Try 1t in Racket using (D D)

43

When to evaluate arguments- The effect

* Consider (Ax. 3)7

B 3

— Result 1s 3; no matter what the argument is.

— Bvaluating the argument is needless.

* Consider (Ax. 3) (D D)

— Evaluate the argument first? Infinite calls.

— Otherwise, the answer is just 3.

Order ot evaluating arguments

How do we evaluate simple expressions?
— So far “innermost”

—eg (+ (*23)4)

Applicative Order (Fager Evaluation):

27

i.e. try to evaluate the redex;
Immediately go to the level of nesting

(Axy. + xy) (+12) (+34)
=(A\xy. + xy) 3 (+ 3 4)
=(Axy. + xy) 37

Lazy Evaluation/Normal Order

Back to (Ax. 3) (D D):

— Applicative Order forces evaluation of (D D) even
though 1t is not needed

— Arguments are evaluated EXACTLY ONC!

Another Strategy: Normal Order

Reduce * 7. 1.e. work with the
outermost bracket level whenever possible.

(Ax. + x 1)

B+ 1)

Can not work at the outermost level now. So reduce the
inner (nested) redex.

=(+51) =6

T

e +isa “strict” function:
— Requires all its arguments before proceeding further

— Forces evaluation of arguments even 1n lazy evaluation

* (Ax. 3) (D D) with Normal Order
3
(D D) not evaluated

Implications

— Applicative Order can cause infinite calls, and evaluate
arguments needlessly

— It evaluates arguments exactly once

o regardless of whether or not they are needed
— Normal Order only evaluates arguments when necessary
—It evaluates arguments zero or more times

e this might be more inefficient

—The dream: Fully Lazy Evaluation
e evaluate arguments zero or one times

* possible, but beyond the scope of this module

Another Example

¢ (. +x%) (562)

e Normal Order [reduction:
+(*62) (*062)
£12 (5 62)

+ 1212 =24

* Applicative Order [} reduction:

— Evaluate argument before 3 reduction; we get 12
+ 1212

=24

