CS4111 - Computer Science Lecture Set 3: Local and global variables

So far...

• Examples have been relatively straightforward

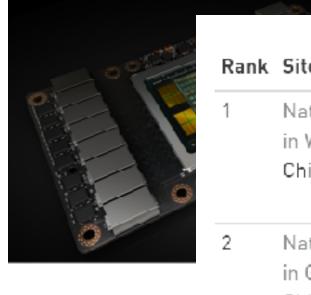
- e.g. Only dealing with single function, no global variables

- assuming single processing core

• From lecture 1:

- How do I design a program that can't be tested?

Why this matters



Rank	Site	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
1	National Supercomputing Center in Wuxi China	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway NRCPC	10,649,600	93,014.6	125,435.9	15,371
2	National Super Computer Center in Guangzhou China	Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel Xeon E5-2692 12C 2.200GHz, TH Express-2, Intel Xeon Phi 31S1P NUDT	3,120,000	33,862.7	54,902.4	17,808
3	Swiss National Supercomputing Centre (CSCS) Switzerland	Piz Daint - Cray XC50, Xeon E5-2690v3 12C 2.6GHz, Aries interconnect, NVIDIA Tesla P100 Cray Inc.	361,760	19,590.0	25,326.3	2,272
4	DOE/SC/Oak Ridge National Laboratory United States	Titan - Cray XK7, Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA K20x Cray Inc.	560,640	17,590.0	27,112.5	8,209
5	DOE/NNSA/LLNL United States	Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom IBM	1,572,864	17,173.2	20,132.7	7,890

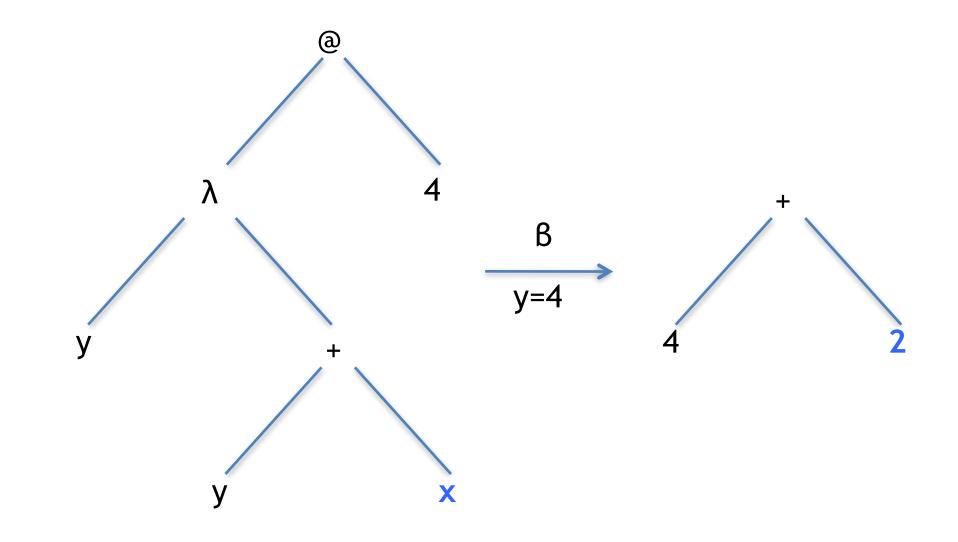
Necessary Tools

- Hundreds of functions
- Millions of copies of the same function running at the same time
- Functions taking other functions as parameters
- We need the ability to keep all these moving parts straight

Local and Global Variables

- > (define x 2)
- > (define addx (lambda (y) (+ y x)))
 - y is local, x is global
- > (addx 4)
- 6
- $>_{\rm X}$
- 2
- > (define x (addx 4))
- $>_{\rm X}$
- 6

Using ASTs



Local and global variables in λ calculus

- Some shorthand...
 - $-\lambda x. E$
 - Function that takes one argument
 - Don't care what function does
- λx. (E F)
 - Same as above, but two distinct parts to function

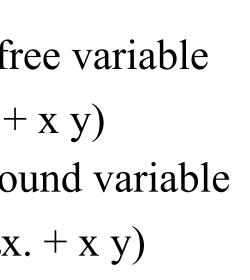
• Examples:

$$-\lambda x. + x y \equiv \lambda x. E$$

 $-E = + x y$

- Terminology:
 - Global variable ≈ free variable
 - y is free in $(\lambda x. + x y)$
 - Local variable \equiv bound variable
 - -x is bound in $(\lambda x. + x y)$

- λx. + x y ≡ λx. E F
 E = + x, F = y
 OR, E = +, F = x y
- $\lambda x. x \equiv \lambda x. E$
- E = x
- But, $\lambda x. x \ll \lambda x. E F$



Free Variables

- X is free in (E F) if X is free in E or in F.
- e.g from above, is y free in (+ x y)?

 $-\mathrm{E} = +\mathrm{x}, \mathrm{F} = \mathrm{y}.$

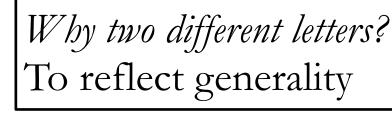
– Not in E, but is in F.

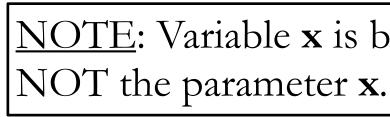
- It DOES occur free in (E F).
- Notice:
 - -E = +, F = x y.
 - Not in E, but is in F.
 - It DOES occur free in (E F).

9

Bound Variables

- X is bound in (E F) if X is bound in E or in F.
- x occurs bound in $(\lambda y. E)$ if
 - x=y AND x occurs free in E
 - OR, x is bound in E. Θ
- Examples:
 - Is x bound in $(\lambda x. + x y)$?
 - x is in the parameter list (λx) and it does appear free in (+x y)
 - Thus, x **is** bound in $(\lambda x. + x y)$.
 - x is a local variable in $(\lambda x. + x y)$.





<u>NOTE</u>: Variable **x** is bound,

- Is y bound in $(\lambda x. + x y)$?
 - It doesn't occur in parameter list
 - Other possibility? Bound in E?
 - E = + x y
 - Occurs free in E, so is NOT bound.
- More Examples:
 - e1: + x 3 x is free in e1
 - $e_{2:}(+x)_{3}$ (consider $e_{2} = E_{F}$)
 - Free in E = (+x), NOT free in F = 3
 - Therefore, free in e2

NOTE: Not Free \neq Bound! $\lambda x. + x 1$ y is neither free nor bound.

Question: How could y be bound in E? Will address on next slide.

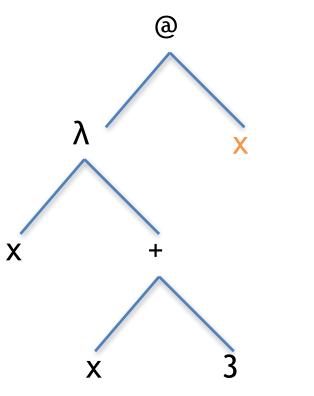
- Is y bound in $(\lambda x. + (\lambda y. + 3 y) x 2)$?
 - It doesn't occur in parameter list
 - Other possibility? Bound in E?
 - $E = (+ (\lambda y. + 3 y) x 2)$
 - It does appear in the parameter list
 - It **is** free in the body (+ 3 y)
 - Therefore, it is bound in E.
 - So, yes, y is bound in $(\lambda x. + (\lambda y. + 3 y) x 2)$
- Nested function
- $((\lambda \underline{x} + (\lambda \underline{y} + 3 \underline{y}) \underline{x} 2) \underline{7})$
- (+ (λy. + 3 y) 7 2)
- (+ (+ 3 7) 2)

- Different order of evaluation
- $((\lambda x. + (\lambda y. + 3 y) x 2) 7)$
- $((\lambda x. + (+3 x) 2) 7)$
- (+ (+ 3 7) 2)

Why didn't we
evaluate (λy. + 3 y)
first?
Because it isn't a
redex; it is missing an
argument.
Will revisit order of
evaluation soon.

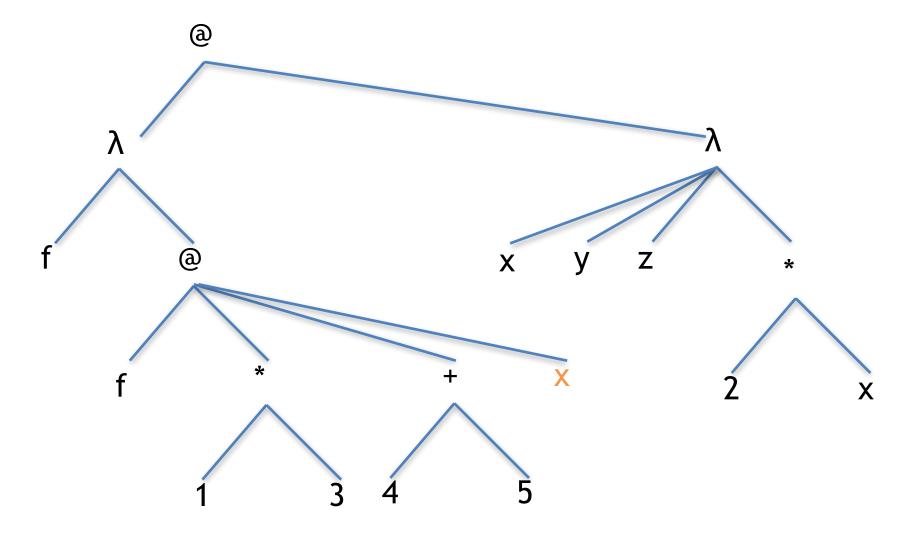
of evaluation y) <u>x</u>2) 7) 2) 7)

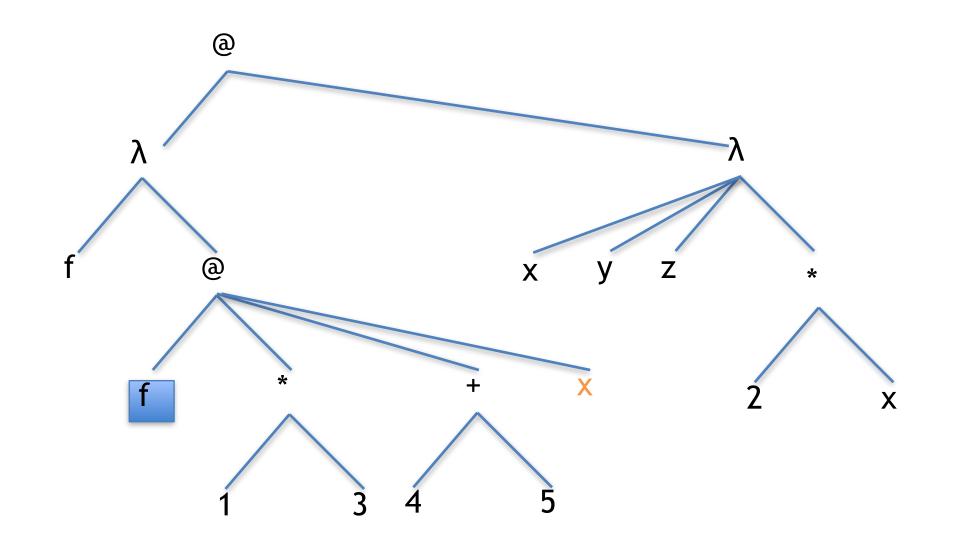
- $(\lambda x. + x 3) x$ E F
- x free or bound?
- Bound in E, free in F
- They are two different x's. The same name does <u>**not**</u> always mean same variable.

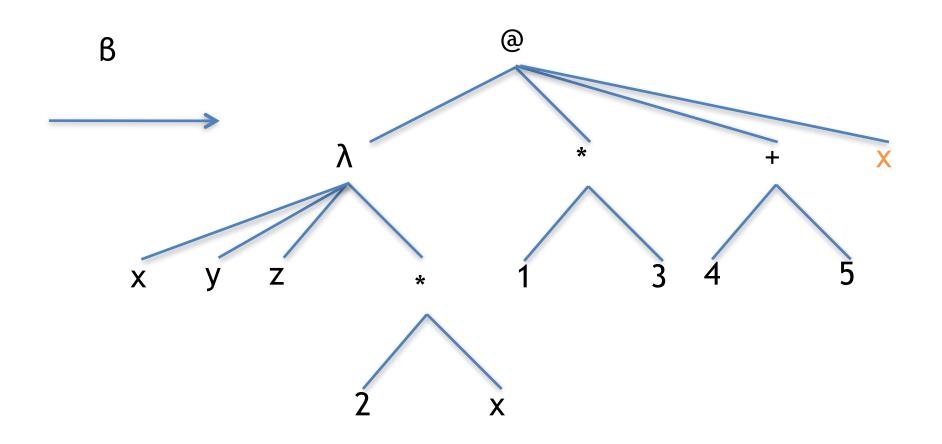


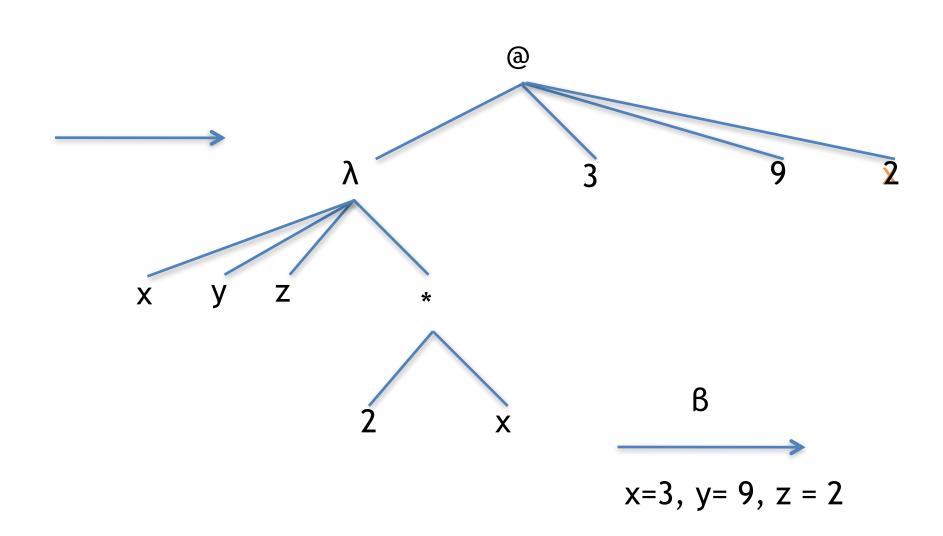
x has to have a value for this lambda to be a *redex*. e.g. (define x 4)

- (define x 2)
- $((\lambda f. f (* 1 3) (+ 4 5) x) ((\lambda xyz. (* 2 x)))$
- Which x is free and which is bound?
- ((λf. f (* 1 3) (+ 4 5) x) ((λxyz. (* 2 x)))
 x is free and x is bound.

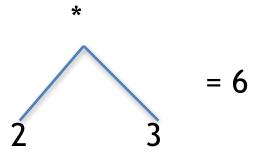




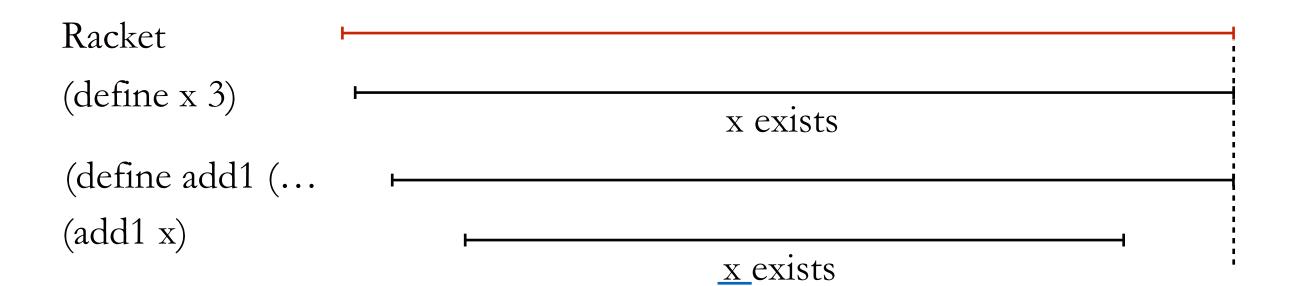




(define x 2)



Recall lifetime diagrams (p. 14) xyz > (define x 3) > (define add1 (lambda (x) (+ x 1))) > (add1 x)



Naming variables

- Variables with the same name are not necessarily the same variable
- Does not imply that two variables are the same
 - To avoid confusion better to keep different names
 - > (define x 3)
 - > (define add1 (lambda (x) (+ x 1)))
 - > (add1 x)
 - 4
 - > X
 - 3

Formally in λ calculus

- β reduction means passing arguments to a lambda.
- Remove the λ and parameters list (e.g. λxy .) and in the *resulting* body, replace the free variables with the arguments.

• $(\lambda x. + x 1) 4$

- The body without λx . is (+ x 1)
- In the *absence* of λx . part, x is free in (+ x 1)
- Replace x with 4
- => (+ 4 1) (redex)
- =5
- $(\lambda x. + x 1) 4 \beta (+ 4 1) = 5$

Nested functions

- ASTs/Prefix expressions can have multiple levels of nesting
 - -E.g. ($\lambda x. * (+ 2 3) (- 2 (* 3 4))) 5$
- But also:
 - $(\lambda x. + (\lambda y. + 2 y) x 4) 3$
 - Beta reduction replaces free occurrences in the body.
 - [x is free, *after* removing the (λx) part]. • $x=3\beta^{+} + (\lambda y. + 2y) 34$ • $y=3\beta + (+23)4$ = 9

- A more confusing but *identical* example: $-(\lambda x. + (\lambda x. + 2 x) x 4) 3$
- Replace only FREE occurrences, after removing λx . • x=3 β + (λx . + 2 x) 3 4
 - Note x is not replaced, because it is *still* bound (to lambda starting with λx).

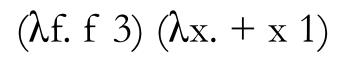
•
$$x=3$$
 β + (+ 2 3) 4
• =9

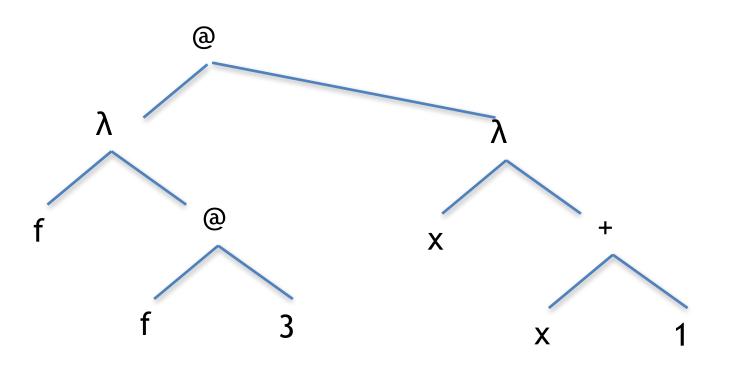
Passing lambdas as arguments

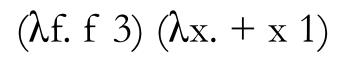
- $(\lambda f. f 3) (\lambda x. + x 1)$
- Argument is a function (lambda)
 - $-\beta$ reduction replaces free occurrences of f.
 - So we get:
 - (λx. + x 1) 3
 - Another β reduction follows:
 - +31 = 4

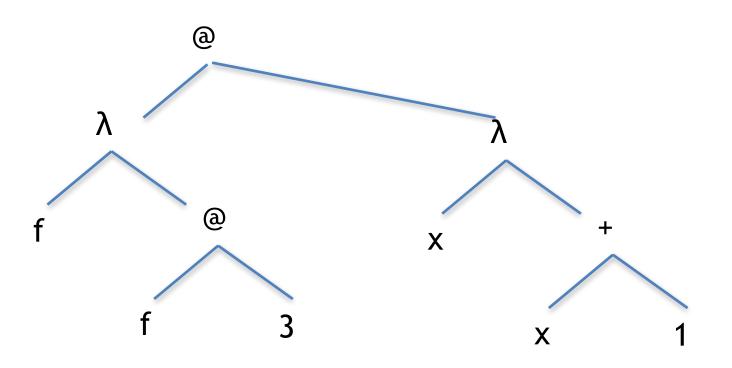
Passing Lambdas as Arguments

- Is this a strange thing to do?
 - No, it is an ENORMOUSLY powerful thing in programming
 - Usually modify functionality by passing **data**
 - Can modify functionality by passing **code**
 - GPUs are often programmed in this way
- Extremely difficult to do in imperative programming
- Simple to do in functional programming

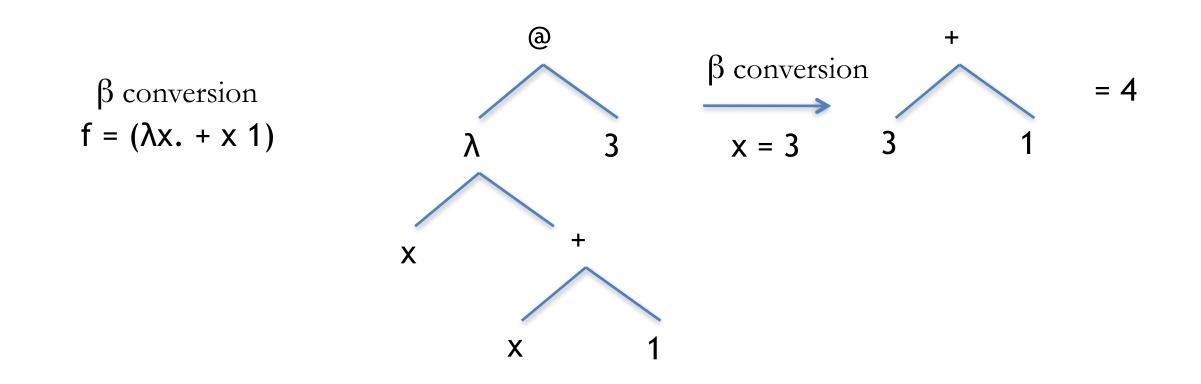


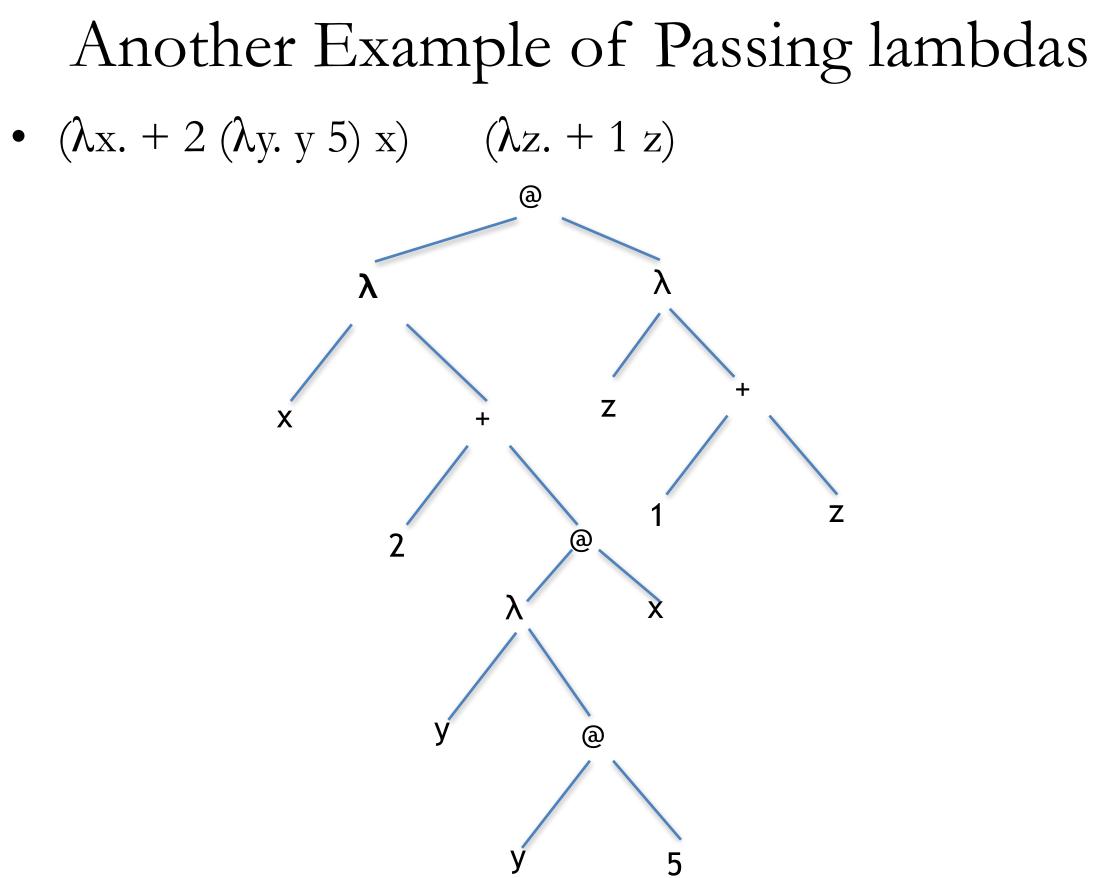


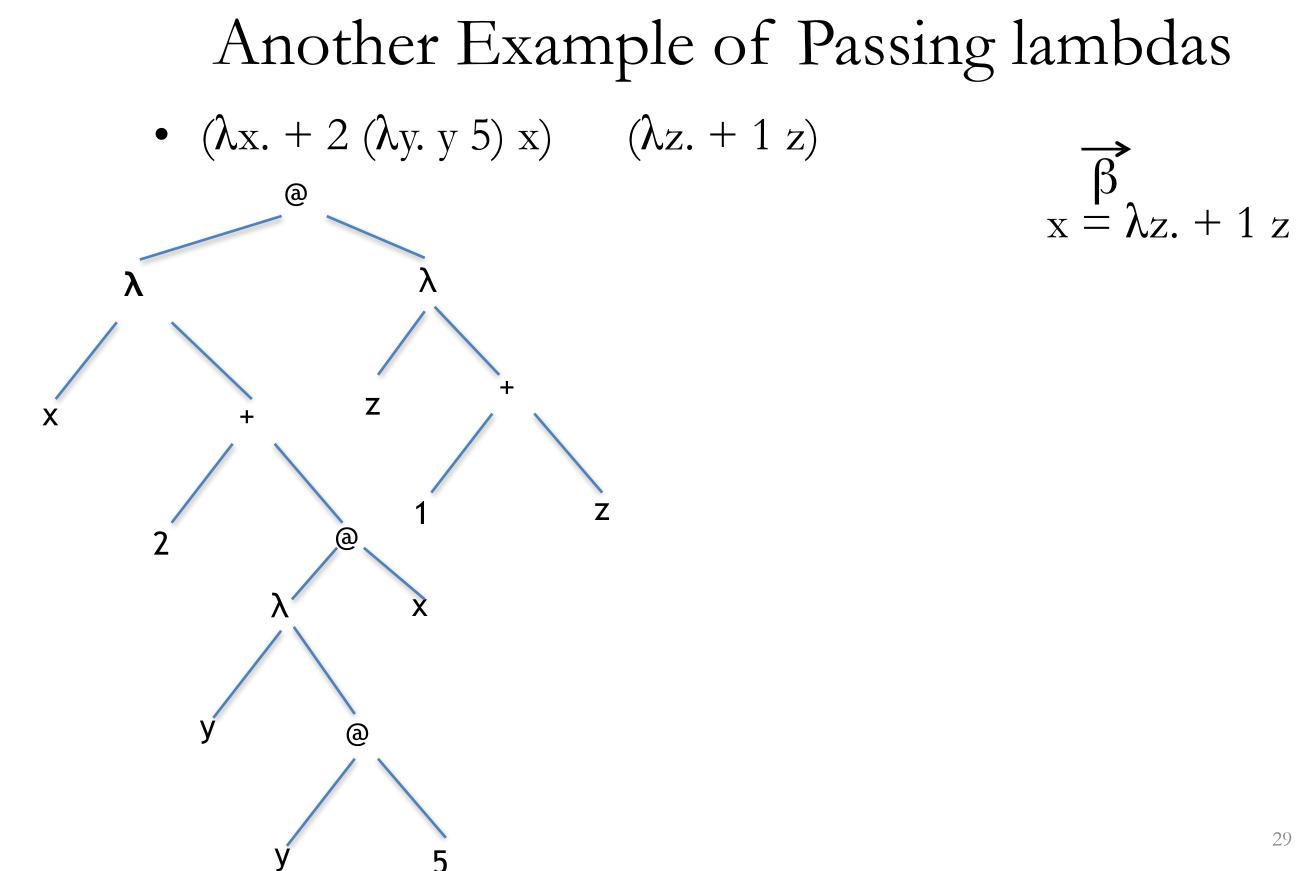




$$(\lambda f. f 3) (\lambda x. + x 1)$$

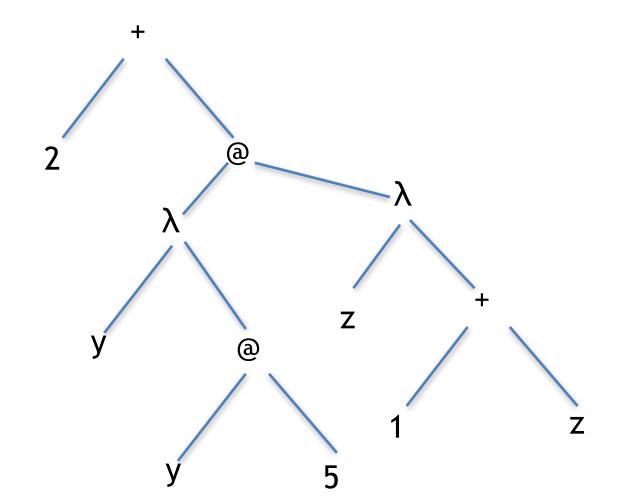






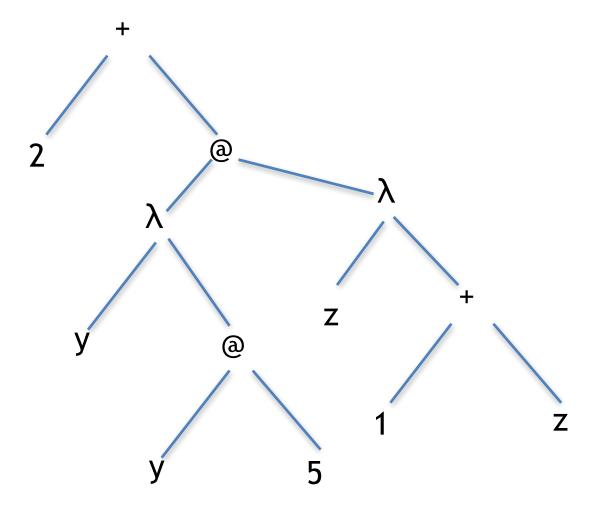
Another Example of Passing lambdas

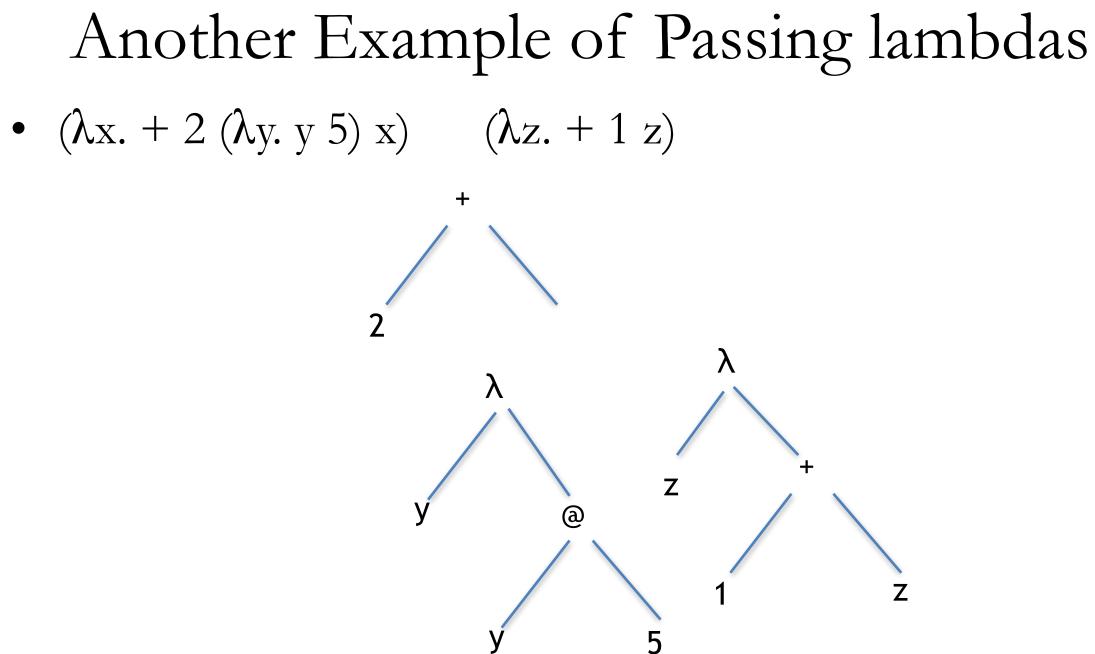
• $(+ 2 (\lambda y. y 5) (\lambda z. + 1 z))$



Another Example of Passing lambdas

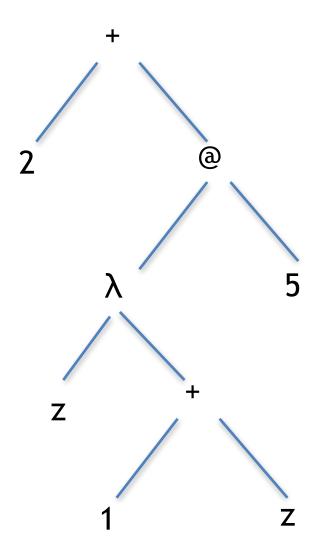
• $(+ 2 (\lambda y. y 5) (\lambda z. + 1 z))$



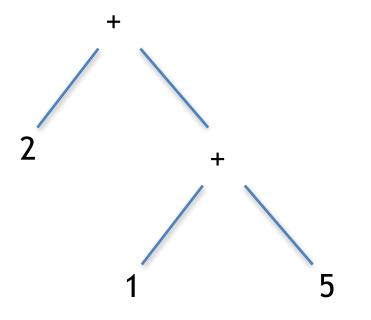


Another Example of Passing lambdas

• $(+2((\lambda z. + 1 z) 5))$



Another Example of Passing lambdas • (+ 2 (+ 1 5))



- Remember: Functions in λ calculus and ASTs (usually) don't have names
- Racket can use them
 - Useful for reusing functions
 - Useful for debugging
 - Slightly more longwinded
 - > (define t (lambda (f) (f 3)))
 - > (t (lambda (x) (+ x 1)))
 - 4

• > (define t2 (lambda (f) (f 2 3))) > (t2 +)(+23)5 > (t27)

Error: attempt to call a non-procedure [(7 2 3)]

- Lesson?
 - Anything can be passed as a parameter: numbers, variables, functions, operators
 - Syntax the same in lambda calculus, AST and Racket
 - Not consistent in imperative programming
 - Very different when passing a function to a function

- Formal Notation for β reduction: $-(\lambda x. E)a \beta E[a/x]$ - Meaning: in E, replace free occurrences of x with a
- Consider: $(\lambda x. + x 1)$ and $(\lambda y. + y 1)$
 - Are they the same?
 - Yes names don't matter.
 - Converting one into another: α -conversion
 - E.g. $(\lambda x. + x 1) \overleftarrow{\alpha} (\lambda y. + y 1)$
 - Note: bi-directional arrow: two way process

- However, if we replace x with y in:
 - $-(\lambda x. + x y)$
 - We get: $(\lambda y + y y)$
 - Not correct. Why?
 - Because y is free in $(\lambda x. + x y)$

– What about:

- $(\lambda x. + x (\lambda y. + y 1) 2) \leftarrow \alpha \rightarrow (\lambda y. + y (\lambda y. + y 1) 2)$
- This is fine
- y is NOT free in the body of the lambda on left side.
- Formal Definition:
 - $-\lambda x$. E $\overleftarrow{\alpha}$ λy . E[y/x], **IF** y does not already exist free in E.

Utility of α -conversion

- $(\lambda f. (\lambda x. f (f x))) x$
- β -reduction=>($\lambda x. x (x x)$)
 - Erroneous.
 - What to do?
- Use α -conversion to avoid confusion:
 - convert x into y inside the nested lambda.
 - $\qquad (\lambda f. (\lambda y. f (f y))) x$
 - β -reduction=> (λy . x (x y))
 - Correct

δ -conversion and Normal Form

- $(\lambda x. (+x 1)) 2$ $\beta (+21)$ $\delta 3$
- (F a1 a2) δ result, where F is a built in operator
- β -reduction puts values in, δ -conversion evaluates them
- The result after full evaluation is said to be in Normal form
 - E.g. (+2 1) = 3 is in Normal form
 - No more redexes left.

More examples of δ -conversion

- reducing redexes to normal form e.g.:
 - (* 3 (+ 5 2))
 - δ (* 3 7)
 →
 - δ 21
 - 21 is in normal form

B-reduction – an interesting example

- $(\lambda f. (\lambda x. f 4 x)) (\lambda yx. + x y) 3$ $-\frac{(\lambda f. (\lambda x. f 4 x))}{-\beta} (\lambda x. (\lambda yx. + x y) 4 x) 3$ $-\frac{\beta}{\beta} (\lambda yx. + x y) 4 x 3$ $-\beta$ (+ 3 4) $-\delta$ 7
- Racket Code
 - (define Lf (lambda (f) (lambda (x) (f 4 x)))) -(define Lyx (lambda (y x) (+ x y)))-((Lf Lyx) 3)

When to evaluate arguments- The effect

- Consider function
 - D: $(\lambda x. x x)$
 - In Racket: (define D (lambda(x) (x x)))
- Evaluate DD
 - $-(\lambda x. x x)$ $(\lambda x. x x)$ $-\beta$ ($\lambda x. x x$) ($\lambda x. x x$) $-\beta$ ($\lambda x. x x$) ($\lambda x. x x$)
 - Infinite calls
 - Try it in Racket using (D D)

When to evaluate arguments- The effect

- Consider $(\lambda x. 3)$ 7 $-\vec{\beta}$ 3
 - Result is 3; no matter what the argument is.
 - Evaluating the argument is needless.
- Consider $(\lambda x. 3)$ (D D)
 - Evaluate the argument first? Infinite calls.
 - Otherwise, the answer is just 3.

Order of evaluating arguments

- How do we evaluate simple expressions? - So far "innermost" -e.g. (+ (* 2 3) 4)
- Applicative Order (Eager Evaluation): "leftmost innermost".
 - i.e. try to evaluate the leftmost redex;
 - Immediately go to the innermost level of nesting
 - $(\lambda xy. + xy) (+ 12) (+ 34)$
 - = $(\lambda xy. + xy) 3 (+ 34)$
 - = $(\lambda_{XV} + x_V) 37$

Lazy Evaluation/Normal Order

- Back to $(\lambda x. 3)$ (D D):
 - Applicative Order forces evaluation of (D D) even though it is **not** needed
 - Arguments are evaluated EXACTLY ONCE
- Another Strategy: Normal Order
 - Reduce "leftmost outermost". i.e. work with the outermost bracket level whenever possible.

•
$$(\lambda x. + x 1) (+ 2 3)$$

- \bigcirc **5** (+ (+ 2 3) 1)
- Can not work at the outermost level now. So reduce the inner (nested) redex.

$$= (+51) = 6$$

- + is a "strict" function:
 - Requires all its arguments before proceeding further
 - Forces evaluation of arguments even in lazy evaluation
- (λx. 3) (D D) with Normal Order
 3
 - (D D) not evaluated

further evaluation

Implications

- Applicative Order *can* cause infinite calls, and evaluate arguments needlessly
- It evaluates arguments **exactly** once
 - regardless of whether or not they are needed
- Normal Order only evaluates arguments when necessary
- -It evaluates arguments zero or more times
 - this **might** be more inefficient
- -The dream: Fully Lazy Evaluation
 - evaluate arguments zero or one times
 - possible, but beyond the scope of this module

Another Example

- $(\lambda x. + x x) (* 6 2)$
- Normal Order β reduction:
 - + (* 6 2) (* 6 2)
 - + 12 (* 6 2)
 - \bullet + 12 12 = 24
- Applicative Order β reduction:
 - Evaluate argument *before* β reduction; we get 12
 - + 12 12
 - =24

