CS4111 - Computer Science Lecture Set 3: Local and global variables

So far…

• Examples have been relatively straightforward

– e.g. Only dealing with single function, no global variables

– assuming single processing core

• From lecture 1:

– *How do I design a program that can't be tested?*

Why this matters

Necessary Tools

- Hundreds of functions
- Millions of copies of the **same** function running at the same time
- Functions taking other functions as parameters
- We need the ability to keep all these moving parts straight

Local and Global Variables

- \bullet > (define x 2)
- $>$ (define addx (lambda (y) $($ + y x)))
	- y is local, x is global
- \bullet > (addx 4)
- 6
- \bullet > x
- 2
- $>$ (define x (addx 4))
- \bullet > X
- 6

Using ASTs

Local and global variables in λ calculus

- Some shorthand...
	- $-\lambda x. E$
	- Function that takes one argument
	- Don't care what function does
- \bullet λ x. $(E \ F)$
	- Same as above, but two distinct parts to function

• Examples:
\n
$$
-\lambda x. + x y = \lambda x. E
$$
\n
$$
- E = + x y
$$

- Terminology:
	- Global variable ≈ free variable
		- $-$ y is free in $(\lambda x. + x y)$
	- Local variable ≡ bound variable
		- x is bound in $(\lambda x. + x y)$
- $\lambda x. + x y = \lambda x. \text{ E F}$ $-E = + x, F = y$ $-$ OR, $E = +$, $F = x y$
- λ x. $x = \lambda x$. E
- $E = x$
- But, λ x. $x \leq \lambda$ x. E F

Free Variables

- X is free in $(E F)$ if X is free in E or in F.
- e.g from above, is y free in $(+ x y)$? $- E = + x, F = y.$
	- Not in E, but is in F.
	- $-$ It DOES occur free in $(E$ F).
- Notice:
	- $E = +$, $F = x y$.
	- Not in E, but is in F.
	- $-$ It DOES occur free in $(E$ F).

9

Bound Variables

- X is bound in $(E F)$ if X is bound in E or in F.
- x occurs bound in (λ*y*. E) if
	- $x=y$ AND *x* occurs free in E
	- \odot OR, *x* is bound in E.
- Examples:
	- Is x bound in $(\lambda x. + x y)$?
	- \bullet x is in the parameter list (λ x) and it does appear free in ($+x$ y)
	- Thus, x is bound in $(\lambda x. + x y)$.
	- \bullet **x** is a local variable in $(\lambda x. + \mathbf{x} y)$.

NOTE: Variable **x** is bound,

- Is y bound in $(\lambda x. + x y)$?
	- It doesn't occur in parameter list
	- Other possibility? Bound in E?
		- $E = + x y$
	- Occurs free in E, so is NOT bound.
- More Examples:
	- e_1 : + x 3 x is free in e1
	- e2: $(+ x)$ 3 (consider e2 = E F)
		- Free in $E = (+ x)$, NOT free in $F = 3$
		- Therefore, free in e2

NOTE: Not Free \neq Bound! $\lambda x. + x 1$ y is neither free nor bound.

Question: How could y be Will address on next slide.

- Is y bound in $(\lambda x. + (\lambda y. + 3 y) x 2)$?
	- It doesn't occur in parameter list
	- Other possibility? Bound in E?
		- $E = (+ (\lambda y. + 3 y) x 2)$
		- It does appear in the parameter list
		- It **is** free in the body $(+ 3 y)$
			- Therefore, it is bound in E.
		- So, yes, y is bound in $(\lambda x. + (\lambda y. + 3 y) x 2)$
- Nested function
- $((\lambda x. + (\lambda y. + 3 y) x 2) 7)$
- $(+ (\lambda y. + 3 y) 7 2)$
- $(+ (+ 3 7) 2)$
- Different order of evaluation
- $(\lambda x. + (\lambda y. + 3 y) \times 2) 7)$
- $((\lambda x. + (+ 3 x) 2) 7)$
- $(+ (+ 3 7) 2)$

Why didn't we evaluate $(\lambda y. + 3 y)$ first? Because it isn't a redex; it is missing an argument. Will revisit order of evaluation soon.

- $(\lambda x. + x 3) x$ E F
- x free or bound?
- Bound in E, free in F
- They are two different x's. The same name does **not** always mean same variable.

x has to have a value for this lambda to be a *redex.* e.g. (define x 4)

- (define x 2)
- $((\lambda f. f (* 1 3) (+ 4 5) x) ((\lambda xyz. (* 2 x)))$
- Which x is free and which is bound?
- $((\lambda f. f (* 1 3) (+ 4 5) x) ((\lambda xyz. (* 2 x)))$ – x is free and x is bound.

(define x 2)

Recall lifetime diagrams (p. 14) xyz $>$ (define x 3) $>$ (define add1 (lambda (x) $(+ \underline{x} 1)$)) $>$ (add1 x)

Naming variables

- Variables with the same name are not necessarily the same variable
- Does not imply that two variables are the same – To avoid confusion better to keep different names

 $>$ (define x 3)

 $>$ (define add1 (lambda (x) $(+ x 1)$)

 $>$ (add1 x)

4

 $> x$

3

Formally in λ calculus

- β reduction means passing arguments to a lambda.
- Remove the λ and parameters list (e.g. λxy) and in the *resulting* body, replace the free variables with the arguments.

 \circ (λ x. + x 1) 4

- The body without λ x. is $(+ x 1)$
- \bullet In the *absence* of λ x. part, x is free in $(+ x 1)$
- Replace x with 4
- \bullet => (+ 4 1) (redex)
- \circ =5
- $(Ax + x 1) 4$ \overrightarrow{B} $(+41) = 5$

Nested functions

- ASTs/Prefix expressions can have multiple levels of nesting
	- $-$ E.g. $(\lambda x. * (+ 2 3) (- 2 (* 3 4))) 5$
- But also:
	- \odot (λ x. + (λ y. + 2 y) x 4) 3
	- Beta reduction replaces **free** occurrences in the body.
	- [x is free, *after* removing the (λx) part]. $\circ x=3$ \overrightarrow{B} + (λy + 2 y) 3 4 $\circ \text{ y=3} \quad \overrightarrow{B}$ + (+ 2 3) 4 \circ = 9

- A more confusing but *identical* example: $- (\lambda x. + (\lambda x. + 2 x) x 4) 3$
- Replace only FREE occurrences, after removing λx. \circ x=3 \overrightarrow{B} + (λ x. + 2 x) 3 4
	- Note x is not replaced, because it is *still* bound (to lambda starting with λ x).

$$
\begin{array}{c}\n\bullet \ x=3 \quad \beta \qquad + (+ 2 3) 4 \\
\bullet =9\n\end{array}
$$

Passing lambdas as arguments

- (λ f. f 3) (λ x. + x 1)
- Argument is a function (lambda)
	- β reduction replaces free occurrences of f.
	- So we get:
		- $(\lambda x. + x 1) 3$
	- Another β reduction follows:
		- $+ 31 = 4$

Passing Lambdas as Arguments

- Is this a strange thing to do?
	- No, it is an ENORMOUSLY powerful thing in programming
	- Usually modify functionality by passing **data**
	- Can modify functionality by passing **code**
	- GPUs are often programmed in this way
- Extremely difficult to do in imperative programming
- Simple to do in functional programming

$$
(\lambda f. f 3) (\lambda x. + x 1)
$$

Another Example of Passing lambdas

• $(+ 2 (\lambda y. y 5) (\lambda z. + 1 z))$

Another Example of Passing lambdas • $(+ 2 (\lambda y. y 5) (\lambda z. + 1 z))$

Another Example of Passing lambdas

• $(+ 2 ((\lambda z. + 1 z) 5))$

Another Example of Passing lambdas • $(+ 2 (+ 1 5))$

- Remember: Functions in λ calculus and ASTs (usually) don't have names
- Racket can use them
	- Useful for reusing functions
	- Useful for debugging
	- Slightly more longwinded
		- $>$ (define t (lambda (f) (f 3)))
		- $>$ (t (lambda (x) (+ x 1)))
		- \bullet 4

• $>$ (define t2 (lambda (f) (f 2 3))) $>$ (t2 +) $(+ 2 3)$ 5 $>$ (t2.7)

Error: attempt to call a non-procedure [**(7 2 3)**]

- Lesson?
	- Anything can be passed as a parameter: numbers, variables, functions, operators
	- Syntax the same in lambda calculus, AST and Racket
	- Not consistent in imperative programming
		- Very different when passing a function to a function

- Formal Notation for β reduction: – (λx. E)a \overrightarrow{B} E[a/x] – Meaning: in E, replace free occurrences of x with a
- Consider: $(\lambda x. + x 1)$ and $(\lambda y. + y 1)$
	- Are they the same?
	- Yes names don't matter.
	- Converting one into another: **α-conversion**
	- E.g. $(\lambda x. + x 1)$ $\overrightarrow{\alpha}$ $(\lambda y. + y 1)$
	- **Note:** bi-directional arrow: two way process

- However, if we replace x with y in:
	- $-$ (λ x. + x y)
	- We get: $(\lambda y. + y y)$
	- Not correct. Why?
		- Because y is free in $(\lambda x. + x y)$

– What about:

- (λx. + x (λy. + y 1) 2) $\overleftrightarrow{\alpha}$ (λy. + y (λy. + y 1) 2)
- This is fine
- y is NOT free in the body of the lambda on left side.
- Formal Definition:
	- $-\lambda x$. E $\overleftrightarrow{\alpha} \lambda y$. E[y/x], **IF** y does not already exist free in **E**.

Utility of α-conversion

- $(\lambda f. (\lambda x. f (f x)))$ x
- β -reduction=> $(\lambda x. x (x x))$
	- Erroneous.
	- What to do?
- Use α-conversion to avoid confusion:
	- convert x into y inside the nested lambda.
	- (λ f. (λ y. f (f y))) x
	- $-$ β-reduction=> (λ y. x (x y))
	- Correct

δ-conversion and Normal Form

- $(\lambda x. (+ x 1)) 2$ β (+ 2 1) δ 3
- (F a1 a2) δ result, where F is a built in operator
- β-reduction puts values in, δ -conversion evaluates them
- The result after full evaluation is said to be in **Normal form**
	- $-$ E.g. $(+2 1) = 3$ is in Normal form
	- No more redexes left.

More examples of δ-conversion

- reducing redexes to normal form e.g.:
	- \bullet (* 3 (+ 5 2))
	- \bullet $\overrightarrow{\delta}$ (* 3 7) δ 21
		-
	- 21 is in normal form

β-reduction – an interesting example

- (λf. (λx. f 4 x)) (λyx. + x y) 3 $-(\lambda f. (\lambda x. \t f \t 4 x)) (\lambda y x. + x y) 3$ $- \beta$ (λx. (λyx. + x y) 4 x) 3 $- \beta$ (λyx. + x y) 4 3 $-\overrightarrow{B}$ (+ 3 4) $-\delta$ 7
- Racket Code
	- $-(define Lf (lambda (f) (lambda (x) (f 4 x)))$ $-(define Lyx (lambda (y x) (+ x y)))$ $-$ ($(Lf$ Lyx) 3)

When to evaluate arguments- The effect

- Consider function
	- $-$ D: $(\lambda x. x x)$
	- $-$ In Racket: (define D (lambda(x) $(x x)$)

• Evaluate DD

- $(\lambda x. x x)$ (λx. x x) $-\overrightarrow{\beta}$ (λx. x x) (λx. x x) $-\overrightarrow{\beta}$ (λx. x x) (λx. x x)
- Infinite calls
- Try it in Racket using (D D)

When to evaluate arguments- The effect

- Consider (λx. 3) 7 $-\vec{B}$ 3
	- Result is 3; no matter what the argument is.
	- Evaluating the argument is needless.
- Consider $(\lambda x. 3)$ (D D)
	- Evaluate the argument first? Infinite calls.
	- Otherwise, the answer is just 3.

Order of evaluating arguments

- How do we evaluate simple expressions? – So far "innermost" $-$ e.g. (+ (* 2 3) 4)
- Applicative Order (Eager Evaluation): "leftmost innermost".
	- i.e. try to evaluate the leftmost redex;
	- Immediately go to the innermost level of nesting
	- \bullet (λ xy. + x y) (+ 1 2) (+ 3 4)
	- $\bullet = (\lambda xy + x y) 3 (+ 3 4)$
	- $\bullet = (\lambda xy + xy) 3 7$

Lazy Evaluation/Normal Order

- Back to $(\lambda x. 3)$ (D D):
	- $-$ Applicative Order forces evaluation of $(D D)$ even though it is **not** needed
	- Arguments are evaluated EXACTLY ONCE
- Another Strategy: Normal Order
	- Reduce "leftmost outermost". i.e. work with the outermost bracket level whenever possible.

• Can not work at the outermost level now. So reduce the inner (nested) redex.

$$
\frac{1}{6} \frac{(\lambda x. + x 1) (+ 2 3)}{(+ (+ 2 3) 1)}
$$

$$
\bullet = (+ 5 1) = 6
$$

- \bullet + is a "strict" function:
	- Requires all its arguments before proceeding further
	- Forces evaluation of arguments even in lazy evaluation
- (λx. 3) (D D) with Normal Order 3
	- (D D) not evaluated

Implications

- Applicative Order *can* cause infinite calls, and evaluate arguments needlessly
- It evaluates arguments **exactly** once
	- regardless of whether or not they are needed
- Normal Order only evaluates arguments when necessary
- –It evaluates arguments **zero or more** times
	- this **might** be more inefficient
- –The dream: Fully Lazy Evaluation
	- evaluate arguments **zero or one** times
	- possible, but beyond the scope of this module

Another Example

- $(\lambda x. + x x)$ (* 6 2)
- Normal Order β reduction:
	- $+$ (* 6 2) (* 6 2)
	- $+ 12$ (* 6 2)
	- \bullet + 12 12 = 24
- Applicative Order β reduction:
	- Evaluate argument *before* β reduction; we get 12
	- $+ 12 12$
	- \circ =24

