
CS4111 - Computer Science
Lecture Set 3: Local and global variables 
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So far…
• Examples have been relatively straightforward 

– e.g. Only dealing with single function, no global variables 

– assuming single processing core 

• From lecture 1: 

– How do I design a program that can’t be tested?
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Why this matters
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Nvidia V100 GPU Accelerator (Mezzanine) 
5120 cores 



Necessary Tools
• Hundreds of  functions 

• Millions of  copies of  the same function running at the same time 

• Functions taking other functions as parameters 

• We need the ability to keep all these moving parts straight
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Local and Global Variables
• > (define x 2) 
• > (define addx (lambda (y) (+ y x))) 
– y is local, x is global 

• > (addx 4) 
• 6 
• > x 
• 2 
• > (define x (addx 4)) 
• > x 
• 6
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Using ASTs
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Local and global variables in λ calculus

• Some shorthand... 
– λx. E 
– Function that takes one argument 
– Don't care what function does 

• λx. (E F) 
– Same as above, but two distinct parts to function 

• Examples: 
– λx. + x y  ≡  λx. E 
– E = + x y
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• λx. + x y ≡  λx. E F 
– E = + x, F = y 
– OR, E = +, F = x y 

• λx. x ≡  λx. E 

• E = x 

• But, λx. x <> λx. E F
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• Terminology: 
– Global variable ≈ free variable 
– y is free in (λx. + x y) 

– Local variable ≡ bound variable 
– x is bound in (λx. + x y)



Free Variables
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• X is free in (E F) if  X is free in E or in F. 
• e.g from above, is y free in (+ x y)? 
– E = + x, F = y. 
– Not in E, but is in F. 
– It DOES occur free in (E F). 

• Notice: 
– E = +, F = x y. 
– Not in E, but is in F. 
– It DOES occur free in (E F).



Bound Variables
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• X is bound in (E F) if  X is bound in E or in F. 

• x occurs bound in (λy. E) if  
x=y AND x occurs free in E 
OR, x is bound in E. 

• Examples: 
Is x bound in (λx. + x y)? 

x is in the parameter list (λx) and it does appear free in (+x y) 
Thus, x is bound in (λx. + x y). 

x is a local variable in (λx. + x y).    

Why two different letters? 
To reflect generality

NOTE: Variable x is bound, 
NOT the parameter x.



• Is y bound in (λx. + x y)? 
– It doesn't occur in parameter list 
– Other possibility? Bound in E?  
• E = + x y 

– Occurs free in E, so is NOT bound. 

• More Examples: 
e1: + x 3              x is free in  e1 
e2: (+ x) 3           (consider e2 = E F) 
• Free in E = (+ x), NOT free in F = 3 
• Therefore, free in e2
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NOTE: Not Free ≠ Bound! 
λx. + x 1 
y is neither free nor bound. 

Question: How could y be 
bound in E?  
Will address on next slide.



• Is y bound in (λx. + (λy. + 3 y) x 2)? 
– It doesn't occur in parameter list 
– Other possibility? Bound in E?  
• E = (+ (λy. + 3 y) x 2) 
• It does appear in the parameter list 
• It is free in the body (+ 3 y) 
• Therefore, it is bound in E. 

• So, yes, y is bound in (λx. + (λy. + 3 y) x 2) 

• Nested function 

• ( (λx. + (λy. + 3 y) x 2) 7) 

• (+ (λy. + 3 y) 7 2) 

• (+ (+ 3 7) 2)
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Why didn’t we 
evaluate (λy. + 3 y) 
first? 
Because it isn’t a 
redex; it is missing an 
argument. 
Will revisit order of  
evaluation soon. 

• Different order of  evaluation 

• ( (λx. + (λy. + 3 y) x 2) 7) 

• ( (λx. + ( + 3 x) 2) 7) 

• (+ (+ 3 7) 2)



• (λx. + x 3) x 
           E       F 
• x free or bound? 
• Bound in E, free in F 
• They are two different x’s. The same name does 

not always mean same variable. 
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• (define x 2) 

• ((λf. f  (* 1 3) (+  4 5) x)    ((λxyz. (* 2 x))) 
• Which x is free and which is bound? 

• ((λf. f  (* 1 3) (+  4 5) x)    ((λxyz. (* 2 x))) 
– x is free and x is bound.
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Recall lifetime diagrams (p. 14) xyz 
   > (define x 3) 
   > (define add1 (lambda (x) (+ x 1))) 
   > (add1 x)
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(define add1 (…

x exists

x exists

Racket
(define x 3)

(add1 x)



Naming variables

• Variables with the same name are not necessarily the same 
variable 

• Does not imply that two variables are the same 
– To avoid confusion better to keep different names 

   > (define x 3) 
   > (define add1 (lambda (x) (+ x 1))) 
   > (add1 x) 
   4 
   > x 
   3

19



Formally in λ calculus

• β reduction means passing arguments to a lambda. 
• Remove the λ and parameters list (e.g. λxy.) and in the 

resulting body, replace the free variables with the arguments. 
(λx. + x 1) 4 
The body without λx. is (+ x 1) 
In the absence of  λx. part, x is free in (+ x 1) 
Replace x with 4  
=> (+ 4 1)  (redex)  
=5 
(λx. + x 1) 4     β        (+ 4 1) = 5     
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Nested functions
• ASTs/Prefix expressions can have multiple levels of  

nesting  
– E.g. (λx. * (+ 2 3) (- 2 (* 3 4))) 5 

• But also: 
(λx. + (λy. + 2 y) x 4) 3 
Beta reduction replaces free occurrences in the body.  
[x is free, after removing the (λx) part].  
x=3    β     + (λy. + 2 y) 3 4 
y=3    β     + (+ 2 3) 4 
= 9      
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• A more confusing but identical example: 

– (λx. + (λx. + 2 x) x 4) 3 

• Replace only FREE occurrences, after removing λx. 

x=3    β     + (λx. + 2 x) 3 4 
Note x is not replaced, because it is still  bound (to 
lambda starting with λx). 

x=3    β     + (+ 2 3) 4 
=9  
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Passing lambdas as arguments

• (λf. f  3) (λx. + x 1) 
• Argument is a function (lambda) 
– β reduction replaces free occurrences of  f. 
– So we get: 
• (λx. + x 1) 3 

– Another β reduction follows: 
• + 3 1 = 4   
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Passing Lambdas as Arguments

• Is this a strange thing to do? 
– No, it is an ENORMOUSLY powerful thing in 

programming 
– Usually modify functionality by passing data 
– Can modify functionality by passing code 
– GPUs are often programmed in this way 

• Extremely difficult to do in imperative programming 
• Simple to do in functional programming
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Another Example of  Passing lambdas
• (λx. + 2 (λy. y 5) x)      (λz. + 1 z)
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Another Example of  Passing lambdas
• (λx. + 2 (λy. y 5) x)      (λz. + 1 z)
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Another Example of  Passing lambdas
• (+ 2 (λy. y 5) (λz. + 1 z))     
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Another Example of  Passing lambdas
• (+ 2 (λy. y 5) (λz. + 1 z))     

31

+

5

λ

y @

y

2 @
λ

+

1 z

z



Another Example of  Passing lambdas
• (λx. + 2 (λy. y 5) x)      (λz. + 1 z)
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Another Example of  Passing lambdas
• (+ 2 ((λz. + 1 z) 5))     
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Another Example of  Passing lambdas
• (+ 2 (+ 1 5))     
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• Remember: Functions in λ calculus and ASTs (usually) 
don't have names 

• Racket can use them 
– Useful for reusing functions 
– Useful for debugging 
– Slightly more longwinded 
• > (define t (lambda (f) (f  3))) 
• > (t   (lambda (x) (+ x 1))   ) 
• 4
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• > (define t2 (lambda (f) (f  2 3))) 
> (t2 +) 
(+ 2 3) 
5 
> (t2 7) 
Error: attempt to call a non-procedure [(7 2 3)] 

• Lesson? 
– Anything can be passed as a parameter: numbers, 

variables, functions, operators 
– Syntax the same in lambda calculus, AST and Racket 
– Not consistent in imperative programming 
• Very different when passing a function to a function
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• Formal Notation for β reduction: 

– (λx. E)a   β     E[a/x] 
–Meaning: in E, replace free occurrences of  x with a 

• Consider: (λx. + x 1) and (λy. + y 1) 
– Are they the same? 
– Yes - names don't matter. 

– Converting one into another: α-conversion 

– E.g. (λx. + x 1)   α     (λy. + y 1) 
–Note: bi-directional arrow: two way process
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• However, if  we replace x with y in: 
– (λx. + x y) 
–We get: (λy. + y y) 
– Not correct. Why? 
• Because y is free in (λx. + x y) 

–What about: 
• (λx. + x  (λy. + y 1 ) 2)    α       (λy. + y  (λy. + y 1 ) 2)    
• This is fine 
• y is NOT free in the body of  the lambda on left side.          

• Formal Definition: 
– λx. E    α    λy. E[y/x], IF y does not already exist free 

in E.
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Utility of  α-conversion

•                 (λf.   (λx.  f   (f  x))  )  x 
• β-reduction=>(λx.  x  (x x)) 
– Erroneous. 
– What to do? 

• Use α-conversion to avoid confusion:  
– convert x into y inside the nested lambda. 
–                   (λf.   (λy.  f   (f  y))  )  x 
– β-reduction=> (λy.  x  (x y)) 
– Correct 
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δ-conversion and Normal Form

• (λx. (+ x 1)) 2 
      β   (+ 2 1) 
      δ         3 

• (F a1 a2)   δ       result, where F is a built in operator  
• β-reduction puts values in, δ-conversion evaluates them  
• The result after full evaluation is said to be in Normal 

form  
– E.g. (+2 1) = 3 is in Normal form 
– No more redexes left.   
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More examples of  δ-conversion

• reducing redexes to normal form e.g.: 
(* 3 (+ 5 2)) 

   δ   (* 3  7) 
   δ    21 
21 is in normal form
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β-reduction – an interesting example

•     (λf. (λx. f   4 x))   (λyx. + x y)   3 
– (λf. (λx.         f           4 x))   (λyx. + x y)   3 
– β    (λx. (λyx. + x y) 4 x)  3 
– β    (λyx. + x y) 4 3 
– β    (+ 3 4) 
– δ    7 

• Racket Code 
– (define Lf      (lambda (f) (lambda (x) (f  4 x) )  )) 
– (define Lyx   (lambda (y x) (+ x y) )  ) 
– ( (Lf    Lyx) 3)
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When to evaluate arguments- The effect

• Consider function 
–    D: (λx. x x) 
– In Racket:    (define D  (lambda(x) (x x))   ) 

• Evaluate    D D 
– (λx.    x            x)      (λx. x x)  

– β  (λx. x x) (λx. x x)  

– β  (λx. x x) (λx. x x) 
– Infinite calls 
– Try it in Racket using (D D)      
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When to evaluate arguments- The effect

• Consider   (λx. 3) 7 
– β    3 
– Result is 3; no matter what the argument is.  
– Evaluating the argument is needless. 

• Consider   (λx. 3) (D D) 
– Evaluate the argument first? Infinite calls.  
– Otherwise, the answer is just 3.       
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Order of  evaluating arguments

• How do we evaluate simple expressions? 
– So far “innermost” 
– e.g. (+ (* 2 3) 4) 

• Applicative Order (Eager Evaluation): 
“leftmost innermost”. 
i.e. try to evaluate the leftmost redex;  
Immediately go to the innermost level of  nesting 
(λxy. + x y) (+ 1 2) (+ 3 4) 
=(λxy. + x y) 3 (+ 3 4) 
=(λxy. + x y) 3 7 
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Lazy Evaluation/Normal Order

• Back to (λx. 3) (D D): 
– Applicative Order forces evaluation of  (D D) even 

though it is not needed 
– Arguments are evaluated EXACTLY ONCE 

• Another Strategy: Normal Order 
Reduce “leftmost outermost”. i.e. work with the 
outermost bracket level whenever possible.  
(λx. + x 1) (+ 2 3) 
β    (+ (+ 2 3) 1) 
Can not work at the outermost level now. So reduce the 
inner (nested) redex. 
=(+ 5 1) = 6 
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• + is a “strict” function: 
– Requires all its arguments before proceeding further 
– Forces evaluation of  arguments even in lazy evaluation

  

• (λx. 3) (D D) with Normal Order 
3 
(D D) not evaluated
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Implications 
– Applicative Order can cause infinite calls, and evaluate 

arguments needlessly 
– It evaluates arguments exactly once 
• regardless of  whether or not they are needed 

– Normal Order only evaluates arguments when necessary  
– It evaluates arguments zero or more times 
• this might be more inefficient 

–The dream: Fully Lazy Evaluation 
• evaluate arguments zero or one times 
• possible, but beyond the scope of  this module
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Another Example

• (λx. + x x) (* 6 2) 
• Normal Order β reduction: 

+ (* 6 2) (* 6 2) 
+ 12 (* 6 2) 
+ 12 12 = 24 

• Applicative Order β reduction: 
– Evaluate argument before β reduction; we get 12 

+ 12 12 
=24  
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