
CS4221 - Computer Science
Lecture Set 1: Expressions

1

Expressions

“Mathematical phrase”

Slope of a line (X1, Y1) and (X2, Y2)

2

1 + 1

Operator Operand

Operator Operand

Evaluating expressions

All numbers?

Some (or all) variables?

e.g. Y2 − Y1, what are Y2 and Y1?

Order of evaluation:

1+2*3=?

3 * 3 = 9

1 + 6 = 7

3

4

Associative
(a + b) + c = a + (b + c)

Commutative
a * b = b * a
a / b ≠ b / a

Example
3 * 4 = 12
4 * 3 = 12
6 / 2 = 3
2 / 6 = ⅓

If operators are different?

Give each a precedence

Standard precedence:

() 
*, /
+, -
Draw? Go left to right

Note, all of these operators are associative,
makes no difference

• Example

• Different kinds of notation:

• So far, have used (mainly) infix notation

• i.e. operators come between operands

5

2 * 3 + 4 / 2 + 2

6 + 4 / 2 + 2

6 + 2 + 2

• Other notations:

• Prefix

• Before operand

• √4 −3, cos 45 etc.

• Super-fix

• Above (and usually after) operand

• 32, xy

• Sub-fix

• Underneath

• logxY, ⅔ 6

Syntax
 How to write the notation

Semantics
 What the notation means

• Postfix

• After operand

• 3++

• Why so many?

• Consider

• All four

• Notice

• Size of square root sign

• Length of line over 2a

• No multiplication sign

• ac right up together
7

Quadratic Formula
ax2 + bx + c = 0

• Reminder - what is this course about?

• Phrasing things unambiguously

• Start where?

• Mix of notation

• Model Driven Development

• Design

• Imperative Programming

• Learn language

• Computer Organisation

• Build hardware

• Computer Science

• Step back and SOLVE the problem
8

• Problems?

• Square root sign

• Can’t be typed

• Variable length

• Variable scope

• Area in which something takes effect

• Aside: X√ would be more convenient

• (b2-4ac)√

• Still pretty ugly...
9

• (b2-4ac)

• Read b

• Meaning?

• Not clear until after squared sign

• (b2-

• Ambiguity

• Subtract next thing?

• Evaluate next sub-expression?

10

• Better if there was a single notation

• No ambiguity

• Everything evaluated the same way

• Separate the “what” from the “how”.

• Make no comment on how to do operation

• e.g. how to add numbers

• Worry about implementation later

• Prefix problem

• Don’t know how to deal with a character (or number)..

• Until after (at least) the next one is read
11

Predictive text
F U CH S I A

12

Locality of Reference

Pr
og

ra
m

10% of code
90% of the work

13

Locality of Reference
10% of code
90% of the work

16GB+

CPU (cores)

Cache memory 8MB

60 nanoseconds

Hard disk 2TB
Approx. 7
microseconds

(1 ms = 1000 ns)

Cache
 Fast, expensive, small
RAM
 Quick, dear, medium
Disk
 Slow, cheap, big

(0.25 nanoseconds)

14

Locality of Reference
10% of code
90% of the work

16GB+

CPU (cores)

Cache memory 8MB

60 nanoseconds

Hard disk 2TB
Approx. 7
microseconds

(1 ms = 1000 ns)

Cache
 Fast, expensive, small
RAM
 Quick, dear, medium
Disk
 Slow, cheap, big

(0.25 nanoseconds)

Internet of Things (IoT)

Low powered devices with small resources

Require efficient programs

• Writing fast programs

• Small (fit in the cache)

• Reuse functionality (stay in the cache)

• Often faster to do one thing many times than several things once

• Often faster to do one thing many times than several things once

15

• Prefix Notation

• Operator goes before operands

• (+ 2 3)

• “Apply plus operator to 2 and 3”

• “Apply operator to next two items”

• “.. to the next two arguments”

• Definitions

• Syntax
• Representation of data/code

16

Semantics

Meaning of syntax

Abstract Syntax

Representation that is
independent of language

System.out.println(“Hello”);

cout << “Hello” << endl;

printf (“Hello\n”);

17

Semantics

Meaning of syntax

Abstract Syntax

Representation that is
independent of language

Design will work with any language

After a translation process

Design once, deploy many times

System.out.println(“Hello”);

cout << “Hello” << endl;

printf (“Hello\n”);

• Abstract Syntax Tree (AST)

• Diagram of expression

• Shows what expression does.

• (+ 2 3)

• More complex tree

• AST

• Convenient graphical notation

18

+

2 3

Root
Nodes

Leaf

+

3-

4 1

• Evaluation

• Evaluate deepest operator

• Repeat until no operators are left

• (- 4 1)

• 3

19

+

3-

4 1

Level 0

Level 1

Level 2

3

20

+

33

+

*

1 2

*

3 4

+

2 12

Nothing on level 1

(+ 3 3) = 6

More complex tree

Order?

Infix?
(1 * 2) + (3 * 4)
1 * 2 + 3 * 4
(+ (* 1 2) (* 3 4))

• Evaluate (+ (* 1 2) (* 3 4))

• Read +

• Means?

• Get first argument

• Get second argument – Add them

• First argument?

• Another expression, evaluate it first

• Read *

• Means?

• Get first argument

• Get second argument – Multiply them

• What next? 21

• Draw AST from prefix notation

• First item (always an operator) in () is a parent

• Second is left child

• Third is right child

• Notes

• A child can be the parent of another child

• i.e. the start of another sub-tree

• Children often called arguments, rather than operands

22

(+ (* 1 2) (* 3 4))

Parse expression:
Read +
Evaluate (*..
Read *
Evaluate (+..
Read +
Read 2
Read 1
Add them

• Evaluating prefix?

• Evaluate most deeply nested first

• (+ (* (+ 2 1) 3) 4)

• (+ (* 3 3) 4)

• AST?

23

+

*

3

4

+

2 1

(+ (* 3 ..

• (+ 2 (* 3 4))

• (+ 2 12)

• (+ (* 3 4) 2)

• (+ 12 2)

24

+

*

4

2

3

+

*

4

2

3

Question

If ASTs are representation independent, can any notation or
representation be converted to one?

• Question

• If ASTs are representation independent, can any notation or
representation be converted to one?

• Fortunately for us, yes.

• Convert infix to AST

• First item on left

• Second becomes parent

• Third on right

25

Note: Assumes all operators
are binary.

Binary: Take two operands.

This is why all trees (we’ve
seen) have parent + two
children

1 + 2

Why is this important?
Because we’re scientists, not programmers!

• AST for 1 + 2 + 3

• Two operators, three operands

• (1 + 2) + 3

• Consider a + b * c

• (a + (b * c))

26

All signs now binary

+

a ?*

b c

Binary: Take two operands.

This is why all trees (we’ve
seen) have parent + two
children

*• a * b + c * d + e

• Group by precedence

• (a * b) + (c * d) + e

• Make binary

• (((a * b) + (c * d)) + e)

• Top operator?

• Most deeply nested operator goes to bottom of the tree

• The first thing evaluated 27

+

*

a b

*

c d

+

e

• (a + (b * c)) +

a

b c

• How to write Sin X in infix?

• Can’t -- must be prefix.

• Infix often contains other representations

• What have we achieved?

• Language independent representation for expressions (ASTs)

• Prefix notation

• Machine independent

• Machine readable

• Consistent
28

• Rewrite as prefix…

• ± … not an operator

• use two different expressions

• b2

• (sqr b)

• Is this fair?

• Consistent with prefix

• Unary argument

29

• b2-X
• (sqr b) - X
• (- (sqr b) X)

sqr

-

X

b

• Square root

• Number of arguments? One

• Treat same as sqr

• (sqrt x)

• (sqrt (- a b))

30

(/ (+ (- b)
(sqrt

(- (sqr b’)
(* (4 (*’ a c)))))

(* 2 a))

/

+

sqrt

*

2 a-

b

sqr

-

*

b’
4 *’

a c

• Global complexity through local interactions

• Repeat the same simple action many times

31

• Less than two neighbours the cell dies of loneliness

• Two or three neighbours, the cell stays alive

• More than three neighbours and the cell dies from overcrowding

• Dead cell with three neighbours becomes alive

• https://bitstorm.org/gameoflife/

32

X

Conway’s Game of Life

Converting from infix to prefix

• Need a simple algorithm to convert any infix expression to
corresponding prefix one

• (2 + (3 * 4))

• + 2 * 3 4

• (+ 2 (* 3 4))

• Respects the order of evaluation

33

Stacks

• Data Structure

• Way of organising data in computer

• Operations

• Add item to the data

• Look at item

• Remove item

34

Arrays
i[0]:=3;
x=i[1]+i[2];
Fixed length

Stacks

35

12
07
21
19

Top

Bottom

• Push item on

• PUSH 11

Stacks

36

12
07
21
19

Top

Bottom

• Push item on

• PUSH 11 11

• Pop item off

• POP

Stacks

37

12
07
21
19

Top

Bottom

• Push item on

• PUSH 11

11

• Pop item off

• POP

• PUSH (O)

• POP (X)

Examples

• Input string:

• HELLO

38

Stack

O/P

H EL LO

O L LEH

Operations O OOOOX XXXX

Examples
• Input string:

• HELLO

• Create:

• HELLO

39

Stack

O/P

HELLO

H E L LO

Operations O XOXOX OXOX

Examples
• Input string:

• HELLO

• Create:

• OHLEL

40

Stack

O/P

Stack

O/P

H EL LO

O

Operations O OOOOX

Not possible
Stacks are fast and simple
Somewhat restrictive
Dynamic data structure

Back to infix to prefix conversion
1. Reverse the expression

2. Read expression one character at a time:

• “)”: Push onto stack

• Operator: Push onto stack

• Operand: Push on and pop off (straight to output)

• “(“: Keep popping stack until “)” is encountered

3. Reverse the output
41

The Stack Method

Example
• Input string:

• 3 + 1

• Reverse:

•) 1 + 3 (

42

Stack

O/P

Stack

O/P

) +

1

Operations OOXOOX

(3 + 1)
3+

X

1 3

