CS54221 - Computer Science

Lecture Set 1: Expressions

Expressions

“Mathematical phrase”
p

1 1

Operator Operand
Slope of aline (X1, Y1) and (X2, Y2)

Operator = % Operand
2 1

Evaluating expressions
All numbers?

Some (or all) variables?

e.g. Y2 — Y1, what are Y2 and Y1?
Order of evaluation:
1+2*3=>
3¥*3=9

1+6=7

Associative

If operators are different? (a+b)+c=a+b+0
. C tatl
Give each a precedence anﬁngu:abvf .
Standard precedence: B 2/b#b/a
xample
3*4 =12
2 4+3=12
*7 0 / 2=73
+, - 2/6="

Draw? Go left to right

Note, all of these operators are associative,
makes no difference

® Example
2%34+4/2+2

6+4/2+2

6+2+2

® Different kinds of notation:
® So far, have used (mainly) infix notation

® ji.c. operators come between operands

® (ther notations:
® Prefix

® Before operand

® 4 —3, cos 45 etc.

® Super-fix

Syntax
How to write the notation

Semantics
What the notation means

® Above (and usually after) operand

® 32 xv
® Sub-fix

® [Underneath

® log.Y, 73

Postfix

® After operand

® 3++

® Why so many?

® (Consider _p-

-

Quadratic Formula
ax2+bx+c=0

All four

® Notice

Size of square root sign
Length ot line over 2a
No multiplication sign
ac right up together

® Reminder - what is this

course about?

® Phrasing things unambiguously

® Start where?

® Mix of notation

® Model Driven Development

® Design

® Imperative Programming

® [earn language

® Computer Organisation

® Build hardware

® Computer Science

® Step back and SOLV!

-, the problem

(—=b+ Vb2 —4xaxc)/(2*a)

® Problems?
® Square root sign
® (Can’t be typed
® Variable length
® Variable scope

® Area in which something takes etfect
® Aside: X¥would be more convenient
® <b2_4ac>1r
® Stll pretty ugly...

® (b2-4ac)
® Read b

® Meaning?

® Not clear until after squared sign
® (b2-
® Ambiguity

® Subtract next thing?

® Fvaluate next sub-expression?

10

® Better if there was a single notation

p
Predictive text

® No ambiguity

E[UCHS [1

® FEverything evaluated the same way
® Separate the “what” tro
® Make no comment on
® c.g. how to add numb:

® Worry about implement

® Prefix problem

® Don’t know how to deal with a character (or number)..

® Until after (at least) the next one 1s read

/ Locality of Reterence

Program

~

10% of code
90% of the work

|

/[

/

12

Locality ot Reference

e "

/

o

CPU (cores)

)
f

y
Cache
Fast, expenstve, small

e

- ,
580;0 gf fﬁ; Quick, dear, medium
- Disk

Slow, cheap, big

Hard disk 2TB

J

Approx. 7

microseconds

(1 ms = 1000 ns)

60 nanoseconds

Cache memory SMB (0.25 nanoseconds)

13

/Internet of Things (I0T)

Low powered devices with small resources

Require efficient programs

A8

~

| 4

—b 4+ /b2 — dac
. 2a
® Writing fast programs
® Small (fit in the cache)
® Reuse functionality (stay in the cache)

® Often faster to do one thing many times than several things once

® Often faster to do one thing many times than several things once

|5

® Prefix Notation

Operator goes before operands
(+ 2 3)

“Apply plus operator to 2 and 3”

“Apply operator to next two items”

“.. to the next two arguments”

® Definitions

® Syntax

® Representation of data/ code

Semantics

Meaning of syntax

Abstract Syntax

Representation that 1s
independent of language

4 N\

System.out.println(“Hello™);

J
N

cout << “Hello” << endl;

\-
/

AN

\-
/

printf (“Hello\n”);

|6

e . N
Semantics

\

System.out.println(“Hello™);

J

Meaning of syntax >

Abstract Syntax

cout << “Hello” << end]l;

N

\-
>
Representation that is

independent of language

printf (“Hello\n”);

AN

- J
/ (] (] [\
Design will work with any language
After a translation process
Design once, deploy many times
o J

|7

® Abstract Syntax Tree (AST)

® Diagram of expression
® Shows what expression does.
® (+23)

® More complex tree

® AST

® (Convenient graphical notation

Nodes

N
2\

lLeaf

Root

18

® Hvaluation

® Fvaluate deepest operator

® Repeat until no operators are left

Level O +

/"
Level 1 3
Level 2

° ((41)

19

Nothing on level 1
(+33)=6

More complex tree

Order?

Infix?
(1*2)+ (3*4
1*2+3%4

(F(F12)(F349)

20

Evaluate (+ (*12) (*3 4))

® Read +

® Means?
® (et first argument
® (et second argument — Add them
® First argument?
® Another expression, evaluate it first
® Read *
® Means?
® (et first argument
® (et second argument — Multiply them

® \What next?

21

® Draw AST from prefix notation

® First item (always an operator) in () 1s a parent

® Seccond is left child (+ (*12) (*34))

® Third is right child

® Notes
® A child can be the parent of another child
® j.c. the start of another sub-tree

® (Children often called arguments, rather than operands

22

® Evaluating preﬁx?

® Fvaluate most deeply nested first

o (+(*

(+21)3) 4)

* (t(E33)4

® AST?

Parse expression:
Read +
Evaluate (*..
Read *
Evaluate (+..
Read +
Read 2
Read 1
Add them

23

N

o (+2(*34) % }&
o (+212) o
® (+(*34)2) T
PN
® (+122) * 2
/™
3 4
Question

It ASTs are representation independent, can any notation or
representation be converted to oner

24

® (Question

® [f ASTs are representation independent, can any notation or

representation be converted to one?

® Tortunately for us, yes.
® (Convert infix to AST
® Tirstitem on left
® Second becomes parent

® Third on right

{Why is this important? J
!

Because we’re scientists, not programmers

Note: Assumes all operators
are binary.

1+ 2

Binary: Take two operands.

This 1s why all trees (we’ve
seen) have parent + two

children

25

Binary: Take two operands.

This 1s why all trees (we’ve

® ASTforl+2+ 3 seen) have parent + two
children

® Two operators, three operands
® (1+2)+3

® Considera+ b * ¢ All signs now binary

¢ (a+(b*0) /\g

/N
b C

26

¢ (a+(b*0) '

AN
® 2*b+c*d+e ’ /N
b C +
® (Group by precedence +/ AN
C
® @*b)+(c*d+e Y,
. N AN
® Make binary a b ¢ d

® (@a*b)+(c*d)Le
® Top operator?
® Most deeply nested operator goes to bottom of the tree

® The first thing evaluated 27

® How to write Sin X 1n infix?
® (Can’t -- must be prefix.
® [nfix often contains other representations
® What have we achieved?
® [anguage independent representation for expressions (ASTs)
® DPrefix notation
® Machine independent
® Machine readable

® (Consistent

28

® Rewrite as prefix...
® T ... notan operator
® usc two different expressions
® H2
® (sqrb)
® [s this fair?
® Consistent with prefix

® Unary argument

—b £+ \/52 — 4dac
20

o Hh2_-X
* (sqrb)-X
o (- (sqr b) X)

N

sqr X

|

b

29

® Square root
® Number of arguments? One

® Treat same as sqt
® (sqrtx)

® (sqrt (-ab))

(/ (+(-b)
(sqrt
(- (sqr b’)
(F (4 (*a0)))
(" 2 a))

.

/N

|

I

/
N

S

sqrt 2

|

PN

Sgr

|

b)

k

/" "\
4

>

N

a

/N

a

C

J

/B2 — 4ac
—

S

20

® Global complexity through local interactions

® Repeat the same simple action many times

31

Conway’s Game of Life

Less than two neighbours the cell dies of loneliness

Two or three neighbours, the cell stays alive

More than three neighbours and the cell dies from overcrowding

Dead cell with three neighbours becomes alive

https:/ /bitstorm.org/gameoflife/

X

32

Converting from intix to prefix

Need a simple algorithm to convert any infix expression to
corresponding prefix one

2+ (3*4)

+2%*34

(+2(*34))

Respects the order of evaluation

33

Stacks

® Data Structure

® Way of organising data in computer
® Operations

® Add item to the data

® | ook atitem

® Remove 1item

First index
0 | 1 2

LA

Element
(at index 8)
\

3 4 5 6 7\8 9 — Indices

| || [lin]

Array length is 10

/Arrays
1|0]:=3;

x=1[1]

o

1[2];

Fixced length

34

Stacks

® Pyshitem on

® PUSH 11

Bottom

o

35

Stacks

® Pyshitem on

Top

\

® PUSH 11
® Pop item oft

* POP L Bottom

36

® Pyshitem on

® PUSH 11
® Pop item oft

e POP
e PUSH (O)

e POP (X)

Stacks

/

Bottom

37

® Input string:
¢ HELLO

Operations O OO0O0OX XXX X

Examples

Stack H |

S 1L 1O

O/P OLLEH

38

Examples

AL LO

® [nput string: Stack B
® HELLO o
® (reate:
e HEILILO

Operations O XOXOXOXOX

39

® Input string:

® HELLO

® (reate:

® OHLEL

Operations O OO0O0OX

Examples

Stack HELLO
O/P O

o

'Not possible

Stacks are fast and simple
Somewhat restrictive
Dynamic data structure

40

Back to infix to preﬁX conversion

1. Reverse the expression

2. Read expression one character at a time:

"The Stack Method

® 9”: Push onto stack

® (Operator: Push onto stack

® Operand: Push on and pop oft (straight to Sutput)
® “(*: Keep popping stack until “)” 1s encountered

3. Reverse the output

41

® [nput string:
® 3+ 1)

® Reverse:
*.1x3(

Operations OOXO0OXX

Example

Stack) 13
O/P 13

42

